alloy Dotaz Zobrazit nápovědu
To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium.
- Klíčová slova
- Corrosion, Fluorides, Impedance, Surface analysis, Titanium alloy,
- MeSH
- koroze MeSH
- slitiny chemie MeSH
- testování materiálů * MeSH
- zubní implantáty * MeSH
- zubní lékařství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- slitiny MeSH
- titanium-niobium alloy MeSH Prohlížeč
- zubní implantáty * MeSH
Porous materials allow for easier osseointegration of implants and their firmer connection with the bone. The presence of pores in a material may become a source of both mechanical and corrosion problems. The presented study explored a Ti-39Nb alloy with a porosity of 0-33%. Specimens were exposed in the physiological solution of two pH values. In view of this material's possible use in dental applications, the effect of fluoride ions on its corrosion behaviour was studied. The open circuit potential and polarization resistance were measured. Data concerning susceptibility to crevice corrosion were obtained from potentiostatic measurements based on the ASTM F746 standard. In terms of corrosion behaviour, specimens with a lower porosity were not much different from the non-porous material. Porosity produced its effect at the level of 24 and 33%. It is obvious that porosity affects corrosion behaviour of this type of material. This conclusion was confirmed by measurements of susceptibility to crevice corrosion which grew with the specimens' increasing porosity. Corrosion resistance of the Ti-39Nb alloy was comparable with that of the compact material, but the presence of pores initiated a local attack of the material.
Fatigue properties of cast AZ91 magnesium alloy processed by severe plastic deformation were investigated and compared with the properties of the initial cast state. The severe plastic deformation was carried out by equal channel angular pressing (ECAP). The ECAP treatment resulted in a bimodal structure. The bimodality consists in a coexistence of fine grained areas with higher content of Mg17Al12 particles and areas exhibiting larger grains and lower density of Mg17Al12 particles. Improvement of the basic mechanical properties of AZ91 (yield stress, tensile strength and ductility) by ECAP was significant. Also the improvement of the fatigue life in the low-cycle fatigue region was substantial. However the improvement of the fatigue strength in the high-cycle fatigue region was found to be negligible. The endurance limit based on 10(7) cycles for the cast alloy was 80 MPa and for the alloy processed by ECAP 85 MPa. The cyclic plastic response in both states was qualitatively similar; initial softening was followed by a long cyclic hardening. Fatigue cracks in cast alloy initiate in cyclic slip bands which were formed in areas of solid solution. In the case of severe plastic deformed material with bimodal structure two substantially different mechanisms of crack initiation were observed. Crack initiation in slip bands was a preferred process in the areas with large grains whereas the grain boundaries cracking was a characteristic mechanism in the fine grained regions.
- Klíčová slova
- AZ91 magnesium alloy, Crack initiation, ECAP, Fatigue,
- MeSH
- hořčík chemie MeSH
- mechanický stres * MeSH
- pevnost v tahu MeSH
- slitiny chemie MeSH
- testování materiálů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hořčík MeSH
- slitiny MeSH
Novel high-entropy (multi-principal elements) alloy based on Fe-Al-Si-Ni-Ti in equimolar proportions has been developed. The alloy powder obtained by mechanical alloying is composed of orthorhombic FeTiSi phase with the admixture of B2 FeAl. During spark plasma sintering of this powder, the FeSi phase is formed and the amount of FeAl phase increases at the expense of the FeTiSi phase. The material is characterized by a high compressive strength (approx. 1500 MPa) at room temperature, being brittle. At 800 °C, the alloy is plastically deformable, having a yield strength of 459 MPa. The wear resistance of the material is very good, comparable to the tool steel. During the wear test, the spallation of the FeSi particles from the wear track was observed locally.
- Klíčová slova
- aluminide, high-entropy alloy, silicide,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The application of biodegradable magnesium-based materials in the biomedical field is highly restricted by their low fatigue strength and high corrosion rate in biological environments. Herein, we treated the surface of a biocompatible magnesium alloy AZ31 by severe shot peening in order to evaluate the potential of surface grain refinement to enhance this alloy's functionality in a biological environment. The AZ31 samples were studied in terms of micro/nanostructural, mechanical, and chemical characteristics in addition to cytocompatibility properties. The evolution of surface grain structure and surface morphology were investigated using optical, scanning and transmission electron microscopy. Surface roughness, wettability, and chemical composition, as well as in depth-microhardness and residual stress distribution, fatigue behaviour and corrosion resistance were investigated. Cytocompatibility tests with osteoblasts (bone forming cells) were performed using sample extracts. The results revealed for the first time that severe shot peening can significantly enhance mechanical properties of AZ31 without causing adverse effects on the growth of surrounding osteoblasts. The corrosion behavior, on the other hand, was not improved; nevertheless, removing the rough surface layer with a high density of crystallographic lattice defects, without removing the entire nanocrystallized layer, provided a good potential for improving corrosion characteristics after severe shot peening and thus, this method should be studied for a wide range of orthopedic applications in which biodegradable magnesium is used. STATEMENT OF SIGNIFICANCE: A major challenge for most commonly used metals for bio-implants is their non-biodegradability that necessitates revision surgery for implant retrieval when used as fixation plates, screws, etc. Magnesium is reported among the most biocompatible metals that resorb over time without adverse tissue reactions and is indispensable for many biochemical processes in human body. However, fast and uncontrolled degradation of magnesium alloys in the physiological environment in addition to their inadequate mechanical properties especially under repeated loading have limited their application in the biomedical field. The present study providesdata on the effect of a relatively simple surface nanocrystallziation method with high potential to tailor the mechanical and chemical behavior of magnesium based material while maintaining its cytocompatibility.
- Klíčová slova
- Biocompatible magnesium alloy, Cytocompatibility, Severe shot peening, Surface grain refinement,
- MeSH
- elektrochemie MeSH
- koroze MeSH
- kultivované buňky MeSH
- lidé MeSH
- nanostruktury chemie ultrastruktura MeSH
- osteoblasty cytologie účinky léků MeSH
- povrchové vlastnosti MeSH
- slitiny farmakologie MeSH
- testování materiálů metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Mg-Al-Zn-Mn-Si-Cu alloy MeSH Prohlížeč
- slitiny MeSH
A significant effort in optimizing the chemical composition and powder metallurgical processing led to preparing new-generation ferritic coarse-grained ODS alloys with a high nano-oxide content. The optimization was aimed at high-temperature creep and oxidation resistance at temperatures in the range of 1100-1300 °C. An FeAlOY alloy, with the chemical composition Fe-10Al-4Cr-4Y2O3 (wt. %), seems as the most promising one. The consolidation of the alloy is preferably conducted by hot rolling in several steps, followed by static recrystallization for 1 h at 1200 °C, which provides a stable coarse-grain microstructure with homogeneous dispersion of nano-oxides. This represents the most cost-effective way of production. Another method of consolidation tested was hot rotary swaging, which also gave promising results. The compression creep testing of the alloy at 1100, 1200, and 1300 °C shows excellent creep performance, which is confirmed by the tensile creep tests at 1100 °C as well. The potential in such a temperature range is the target for possible applications of the FeAlOY for the pull rods of high-temperature testing machines, gas turbine blades, or furnace fan vanes. The key effort now focuses on expanding the production from laboratory samples to larger industrial pieces.
- Klíčová slova
- creep, high-temperature, mechanical alloying, oxide-dispersion-strengthened (ODS) alloy, threshold stress,
- Publikační typ
- časopisecké články MeSH
The NiTi alloy, known as Nitinol, represents one of the most investigated smart alloys, exhibiting a shape memory effect and superelasticity. These, among many other remarkable attributes, enable its utilization in various applications, encompassing the automotive industry, aviation, space exploration, and, notably, medicine. Conventionally, Nitinol is predominantly produced in the form of wire or thin sheets that allow producing many required components. However, the manufacturing of complex shapes poses challenges due to the tenacity of the NiTi alloy, and different processing routes at elevated temperatures have to be applied. Overcoming this obstacle may be facilitated by additive manufacturing methods. This article provides an overview of the employment of additive manufacturing methods, allowing the preparation of the required shapes of Nitinol products while retaining their exceptional properties and potential applications.
- Klíčová slova
- NiTi alloy, additive manufacturing, shape memory alloy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Low-modulus biomedical beta titanium alloys often suffer from low strength which limits their use as load-bearing orthopaedic implants. In this study, twelve different Ti-Nb-Zr-Ta based alloys alloyed with Fe, Si and O additions were prepared by arc melting and hot forging. The lowest elastic modulus (65GPa) was achieved in the benchmark TNTZ alloy consisting only of pure β phase with low stability due to the 'proximity' to the β to α'' martensitic transformation. Alloying by Fe and O significantly increased elastic modulus, which correlates with the electrons per atom ratio (e/a). Sufficient amount of Fe/O leads to increased yield stress, increased elongation to fracture and also to work hardening during deformation. A 20% increase in strength and a 20% decrease in the elastic modulus when compared to the common Ti-6Al-4V alloy was achieved in TNTZ-Fe-Si-O alloys, which proved to be suitable for biomedical use due to their favorable mechanical properties.
- Klíčová slova
- Ductility, Elastic modulus, Orthopaedic implants, Strengthening mechanisms, Ultrasound spectroscopy, β-Ti alloys,
- MeSH
- biokompatibilní materiály analýza MeSH
- křemík MeSH
- kyslík MeSH
- modul pružnosti MeSH
- niob MeSH
- slitiny analýza MeSH
- tantal MeSH
- testování materiálů MeSH
- titan MeSH
- zatížení muskuloskeletálního systému MeSH
- železo MeSH
- zinek MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- křemík MeSH
- kyslík MeSH
- niob MeSH
- slitiny MeSH
- tantal MeSH
- titan MeSH
- titanium alloy (TiAl6V4) MeSH Prohlížeč
- železo MeSH
- zinek MeSH
Fe-Al-Si alloys have been previously reported as an interesting alternative to common high-temperature materials. This work aimed to improve the properties of FeAl20Si20 alloy (in wt.%) by the application of powder metallurgy process consisting of ultrahigh-energy mechanical alloying and spark plasma sintering. The material consisted of Fe3Si, FeSi, and Fe3Al2Si3 phases. It was found that the alloy exhibits an anomalous behaviour of yield strength and ultimate compressive strength around 500 °C, reaching approximately 1100 and 1500 MPa, respectively. The results also demonstrated exceptional wear resistance, oxidation resistance, and corrosion resistance in water-based electrolytes. The tested manufacturing process enabled the fracture toughness to be increased ca. 10 times compared to the cast alloy of the same composition. Due to its unique properties, the material could be applicable in the automotive industry for the manufacture of exhaust valves, for wear parts, and probably as a material for selected aggressive chemical environments.
- Klíčová slova
- Fe–Al–Si alloy, characterization, iron silicide, mechanical alloying, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
Compressive creep tests were performed on a CoCrFeNiMn equiatomic alloy with the dispersion of (i) aluminum nitride or (ii) boron nitride at temperatures of 973 K and 1073 K. The results are compared with previously published creep rates of the unreinforced matrix alloy and the alloy when strengthened by yttrium + titanium oxides. The comparison reveals that the creep rate is essentially unchanged by the presence of aluminum nitride particles, whereas it is reduced by the presence of oxide particles. Boron nitride particles do not influence the creep rate at low stresses but reduce it substantially at high stresses.
- Klíčová slova
- creep, dispersion-strengthened alloy, high-entropy alloy, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH