auxin–cytokinin ratio Dotaz Zobrazit nápovědu
BACKGROUND AND AIMS: The typical rootless linear shoots of aquatic carnivorous plants exhibit clear, steep polarity associated with very rapid apical shoot growth. The aim of this study was to determine how auxin and cytokinin contents are related to polarity and shoot growth in such plants. METHODS: The main auxin and cytokinin metabolites in separated shoot segments and turions of two carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, were analysed using ultra-high-performance liquid chromatography coupled with triple quad mass spectrometry. KEY RESULTS: In both species, only isoprenoid cytokinins were identified. Zeatin cytokinins predominated in the apical parts, with their concentrations decreasing basipetally, and the trans isomer predominated in A. vesiculosa whereas the cis form was more abundant in U australis. Isopentenyladenine-type cytokinins, in contrast, increased basipetally. Conjugated cytokinin metabolites, the O-glucosides, were present at high concentrations in A. vesiculosa but only in minute amounts in U. australis. N(9)-glucoside forms were detected only in U. australis, with isopentenyladenine-9-glucoside (iP9G) being most abundant. In addition to free indole-3-acetic acid (IAA), indole-3-acetamide (IAM), IAA-aspartate (IAAsp), IAA-glutamate (IAGlu) and IAA-glycine (IAGly) conjugates were identified. CONCLUSIONS: Both species show common trends in auxin and cytokinin levels, the apical localization of the cytokinin biosynthesis and basipetal change in the ratio of active cytokinins to auxin, in favour of auxin. However, our detailed study of cytokinin metabolic profiles also revealed that both species developed different regulatory mechanisms of active cytokinin content; on the level of their degradation, in U. australis, or in the biosynthesis itself, in the case of A. vesiculosa Results indicate that the rapid turnover of these signalling molecules along the shoots is essential for maintaining the dynamic balance between the rapid polar growth and development of the apical parts and senescence of the older, basal parts of the shoots.
- Klíčová slova
- Aldrovanda vesiculosa, Auxin, Utricularia australis, cytokinin, growth polarity, phytohormones, rootless aquatic plants,
- MeSH
- cytokininy metabolismus MeSH
- Droseraceae fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- Magnoliopsida fyziologie MeSH
- masožravci MeSH
- vodní organismy MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- indoleacetamide MeSH Prohlížeč
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové MeSH
Plant hormones cytokinins, auxin (indole-3-acetic acid), and abscisic acid are central to regulation of plant growth and defence to abiotic stresses such as salinity. Quantification of the hormone levels and determination of their ratios can reveal different plant strategies to cope with the stress, e.g., suppression of growth or mobilization of plant metabolism. This chapter describes a procedure enabling such quantification. Due to the high variability of these hormones in plant tissues, it is advantageous to determine their content in the same sample. Reverse phase and ion exchange chromatography allows separation of the individual hormone fractions. Hormones as well as their metabolites can be identified and quantified by LC/MS.
- MeSH
- cytokininy analýza izolace a purifikace MeSH
- fyziologický stres * MeSH
- hmotnostní spektrometrie MeSH
- kořeny rostlin chemie metabolismus MeSH
- kyselina abscisová analýza izolace a purifikace MeSH
- kyseliny indoloctové analýza izolace a purifikace MeSH
- listy rostlin chemie metabolismus MeSH
- rostlinné extrakty chemie MeSH
- rostliny chemie metabolismus MeSH
- salinita * MeSH
- tolerance k soli fyziologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyselina abscisová MeSH
- kyseliny indoloctové MeSH
- rostlinné extrakty MeSH
Successful use of woody species in reducing climatic and environmental risks of energy shortage and spreading pollution requires deeper understanding of the physiological functions controlling biomass productivity and phytoremediation efficiency. Targets in the breeding of energy willow include the size and the functionality of the root system. For the combination of polyploidy and heterosis, we have generated triploid hybrids (THs) of energy willow by crossing autotetraploid willow plants with leading cultivars (Tordis and Inger). These novel Salix genotypes (TH3/12, TH17/17, TH21/2) have provided a unique experimental material for characterization of Mid-Parent Heterosis (MPH) in various root traits. Using a root phenotyping platform, we detected heterosis (TH3/12: MPH 43.99%; TH21/2: MPH 26.93%) in the size of the root system in soil. Triploid heterosis was also recorded in the fresh root weights, but it was less pronounced (MPH%: 9.63-19.31). In agreement with root growth characteristics in soil, the TH3/12 hybrids showed considerable heterosis (MPH: 70.08%) under in vitro conditions. Confocal microscopy-based imaging and quantitative analysis of root parenchyma cells at the division-elongation transition zone showed increased average cell diameter as a sign of cellular heterosis in plants from TH17/17 and TH21/2 triploid lines. Analysis of the hormonal background revealed that the auxin level was seven times higher than the total cytokinin contents in root tips of parental Tordis plants. In triploid hybrids, the auxin-cytokinin ratios were considerably reduced in TH3/12 and TH17/17 roots. In particular, the contents of cytokinin precursor, such as isopentenyl adenosine monophosphate, were elevated in all three triploid hybrids. Heterosis was also recorded in the amounts of active gibberellin precursor, GA19, in roots of TH3/12 plants. The presented experimental findings highlight the physiological basics of triploid heterosis in energy willow roots.
- Klíčová slova
- Salix, auxin–cytokinin ratio, cell cycle, hybrid vigor, mid-parent heterosis, root development,
- MeSH
- cytokininy MeSH
- diploidie MeSH
- hybridní efekt * genetika MeSH
- kyseliny indoloctové MeSH
- půda MeSH
- Salix * genetika MeSH
- šlechtění rostlin MeSH
- triploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- půda MeSH
PREMISE: Root-sprouting (RS) is an evolutionarily independent alternative to axillary stem branching for a plant to attain its architecture. Root-sprouting plants are better adapted to disturbance than non-RS plants, and their vigor is frequently boosted by biomass removal. Nevertheless, RS plants are rarer than plants that are not root-sprouters, possibly because they must overcome developmental barriers such as intrinsic phytohormonal balance or because RS ability is conditioned by injury to the plant body. The objective of this study was to identify whether phytohormones or injury enable RS. METHODS: In a greenhouse experiment, growth variables, root respiration, and phytohormones were analyzed in two closely related clonal herbs that differ in RS ability (spontaneously RS Inula britannica and rhizomatous non-RS I. salicina) with and without severe biomass removal. RESULTS: As previously reported, I. britannica is a root-sprouter, but injury did not boost its RS ability. Root respiration did not differ between the two species and decreased continuously with time irrespectively of injury, but their phytohormone profiles differed significantly. In RS species, the auxins-to-cytokinins ratio was low, and injury further decreased it. CONCLUSIONS: This first attempt to test drivers behind different plant growth forms suggests that intrinsic phytohormone regulation, especially the auxins-to-cytokinins ratio, might be behind RS ability. Injury, causing a phytohormonal imbalance, seems to be less important in spontaneously RS species than expected for RS species in general.
- Klíčová slova
- Asteraceae, Inula britannica, Inula salicina, auxin/cytokinin ratio, biomass, buds, disturbance, phytohormones, root respiration,
- MeSH
- cytokininy * fyziologie MeSH
- kořeny rostlin MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin * fyziologie MeSH
- rostliny MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy * MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin * MeSH
It has long been known that hormones affect the interaction of a phytopathogen with its host plant. The pathogen can cause changes in plant hormone homeostasis directly by affecting biosynthesis or metabolism in the plant or by synthesizing and secreting the hormone itself. We previously demonstrated that pathogenic fungi of the Fusarium species complex are able to produce three major types of hormones: auxins, cytokinins, and gibberellins. In this work, we explore changes in the levels of these hormones in maize and mango plant tissues infected with Fusarium. The ability to produce individual phytohormones varies significantly across Fusarium species and such differences likely impact host specificity inducing the unique responses noted in planta during infection. For example, the production of gibberellins by F. fujikuroi leads to elongated rice stalks and the suppression of gibberellin biosynthesis in plant tissue. Although all Fusarium species are able to synthesize auxin, sometimes by multiple pathways, the ratio of its free form and conjugates in infected tissue is affected more than the total amount produced. The recently characterized unique pathway for cytokinin de novo synthesis in Fusarium appears silenced or non-functional in all studied species during plant infection. Despite this, a large increase in cytokinin levels was detected in F. mangiferae infected plants, caused likely by the up-regulation of plant genes responsible for their biosynthesis. Thus, the accumulation of active cytokinins may contribute to mango malformation of the reproductive organs upon infection of mango trees. Together, our findings provide insight into the complex role fungal and plant derived hormones play in the fungal-plant interactions.
- Klíčová slova
- Fusarium, auxin, cytokinin, gibberellin, host–pathogen interaction, mango malformation disease (MMD),
- Publikační typ
- časopisecké články MeSH
Common centaury (Centaurium eryhtraea Rafn) is a medicinal plant species with vigorous morphogenic potential in vitro. The process of spontaneous shoot regeneration in a solid root culture is characteristic for this plant species. In this context, the aim of this work was to investigate the dynamic changes of endogenous phytohormones and carbohydrates content in root explants at different time points (0, 2, 4, 7, 14, 21, 28, and 60 days) during spontaneous centaury morphogenesis in vitro. Detailed analysis of cytokinins (CKs) showed that trans-zeatin (tZ) was the major bioactive CK at all time points. The corresponding riboside, tZ9R, was also determined in the majority of the identified transport forms, at all time-points. Further analysis of endogenous auxin revealed a significant increase in endogenous indole-3-acetic acid (IAA) after 21 days, when a huge jump in the ratio of IAA/bioactive CKs was also observed. The maximum total soluble sugar content was measured after 14 days, while a significant decrease was determined after 21 days, when the first regenerated adventitious shoots appeared. This undoubtedly indicates an increased energy requirement prior to the actual regeneration of the shoots. The obtained results indicate that the period from day 14 to day 21 involves the most dramatic disturbances in endogenous bioactive CKs, IAA and carbohydrate balance, which are very important and valuable factors for the onset of shoot regeneration.
- Klíčová slova
- auxin, centaury, cytokinin, morphogenesis, phytohormone, soluble sugars,
- Publikační typ
- časopisecké články MeSH
Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germination and seedling establishment. But although the phenomenon can be found in numerous species and apparently evolved several times independently, its developmental time course or molecular regulation remains largely unknown. Here, we studied fruit development in Aethionema arabicum, a dimorphic member of the Brassicaceae family. We characterized fruit morph differentiation by comparatively analyzing discriminating characters like fruit growth, seed abortion and dehiscence zone development. Our data demonstrate that fruit morph determination is a 'last-minute' decision happening in flowers after anthesis directly before the first morphotypical differences start to occur. Several growth experiments in combination with hormone and gene expression analyses further indicate that an accumulation balance of the plant hormones auxin and cytokinin in open flowers together with the transcript abundance of the Ae. arabicum ortholog of BRANCHED1, encoding a transcription factor known for its conserved function as a branching repressor, may guide fruit morph determination. Thus, we hypothesize that the plasticity of the fruit morph ratio in Ae. arabicum may have evolved through the modification of a preexisting network known to govern correlative dominance between shoot organs.
- Klíčová slova
- Aethionema arabicum, BRANCHED1, auxin, carpic dominance, cytokinin, fruit development, fruit dimorphism, molecular evolution, phytohormones, shoot branching,
- MeSH
- Brassicaceae anatomie a histologie růst a vývoj MeSH
- květy anatomie a histologie růst a vývoj MeSH
- ovoce anatomie a histologie růst a vývoj MeSH
- semena rostlinná anatomie a histologie růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Habituated embryogenic line of pumpkin contained more CKs and IAA, but less ABA than the non-habituated line. Pronounced hypomethylation correlated with the absence of 2,4-D, addition of 5-azaC, and the process of habituation. A comparative analysis between habituated and non-habituated embryogenic cultures of pumpkin (Cucurbita pepo L.) in relation to endogenous phytohormones, global DNA methylation, and developmental and regeneration capacities of the cultures was conducted. The analysis revealed more cytokinins (CKs) and indole-3-acetic acid (IAA), but less abscisic acid (ABA) in the habituated HEC line than in the non-habituated DEC line. Ribosides and ribotides were the most abundant CK forms in both HEC and DEC lines (75.9 and 57.6 %, respectively). HEC contained more free-base CKs (5.8 vs. 3.2 %), whereas DEC contained considerably more O-glycosides (39.1 vs. 18.3 %). Although prevalence of IAA was common for both lines, relative ratio of CKs and ABA differed between DEC and HEC lines. ABA was prevailing over CKs in DEC, while CKs prevailed over ABA in HEC line. Taking into account the importance of ABA for embryo maturation, the reduced endogenous ABA content in HEC line might be the reason for a 5-fold reduction in regeneration capacity compared to DEC. Both habituated and non-habituated embryogenic lines were highly methylated in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). Pronounced hypomethylation correlated with the absence of 2,4-D, addition of 5-azacytidine (5-azaC), but also with the process of habituation. The habituated line was resistant to the effect of hypomethylation drug 5-azaC and remained highly methylated even after the addition of 5-azaC. Also, 5-azaC did not change the developmental pattern in the habituated line, indicating the existence of separate mechanisms by which 2,4-D influences global DNA methylation in comparison to habituation-related global DNA methylation.
- Klíčová slova
- ABA, CKs, DNA methylation, Habituation, IAA, Somatic embryogenesis,
- MeSH
- azacytidin farmakologie MeSH
- Cucurbita účinky léků embryologie genetika MeSH
- cytokininy metabolismus MeSH
- epigeneze genetická účinky léků MeSH
- herbicidy farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- kyselina 2,4-dichlorfenoxyoctová farmakologie MeSH
- kyselina abscisová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metylace DNA účinky léků MeSH
- regulátory růstu rostlin metabolismus MeSH
- somatická embryogeneze rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azacytidin MeSH
- cytokininy MeSH
- herbicidy MeSH
- indoleacetic acid MeSH Prohlížeč
- inhibitory enzymů MeSH
- kyselina 2,4-dichlorfenoxyoctová MeSH
- kyselina abscisová MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Plant hormones regulate numerous developmental and physiological processes. Abiotic stresses considerably affect production and distribution of phytohormones as the stress signal triggers. The homeostasis of plant hormones is controlled by their de novo synthesis and catabolism. The aim of this work was to analyse the contents of total and individual groups of endogenous cytokinins (CKs) as well as indole-3-acetic acid (IAA) in AtCKX overexpressing centaury plants grown in vitro on graded NaCl concentrations (0, 50, 100, 150, 200 mM). The levels of endogenous stress hormones including abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) were also detected. The elevated contents of total CKs were found in all analysed centaury shoots. Furthermore, increased amounts of all five CK groups, as well as enhanced total CKs were revealed on graded NaCl concentrations in non-transformed and AtCKX roots. All analysed AtCKX centaury lines exhibited decreased amounts of endogenous IAA in shoots and roots. Consequently, the IAA/bioactive CK forms ratios showed a significant variation in the shoots and roots of all AtCKX lines. In shoots and roots of both non-transformed and AtCKX transgenic centaury plants, salinity was associated with an increase of ABA and JA and a decrease of SA content.
- MeSH
- Centaurium růst a vývoj metabolismus MeSH
- cyklopentany analýza metabolismus MeSH
- cytokininy analýza metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyselina abscisová analýza metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové analýza metabolismus MeSH
- oxylipiny analýza metabolismus MeSH
- regulátory růstu rostlin analýza metabolismus MeSH
- solný stres * MeSH
- techniky in vitro MeSH
- výhonky rostlin růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- cytokininy MeSH
- indoleacetic acid MeSH Prohlížeč
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
To counter environmental cues, cultivated tomato (Solanum lycopersicum L.) has evolved adaptive mechanisms requiring regulation of downstream genes. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors regulate abiotic stresses responses in plants. Herein, we isolated a novel DREB2-type regulator involved in salinity response, named SlDREB2. Spatio-temporal expression profile together with investigation of its promoter activity indicated that SlDREB2 is expressed during early stages of seedling establishment and in various vegetative and reproductive organs of adult plants. SlDREB2 is up-regulated in roots and young leaves following exposure to NaCl, but is also induced by KCl and drought. Its overexpression in WT Arabidopsis and atdreb2a mutants improved seed germination and plant growth in presence of different osmotica. In tomato, SlDREB2 affected vegetative and reproductive organs development and the intronic sequence present in the 5' UTR drives its expression. Physiological, biochemical and transcriptomic analyses showed that SlDREB2 enhanced plant tolerance to salinity by improvement of K(+) /Na(+) ratio, and proline and polyamines biosynthesis. Exogenous hormonal treatments (abscisic acid, auxin and cytokinins) and analysis of WT and 35S::SlDREB2 tomatoes hormonal contents highlighted SlDREB2 involvement in abscisic acid biosynthesis/signalling. Altogether, our results provide an overview of SlDREB2 mode of action during early salt stress response.
- Klíčová slova
- Arabidopsis thaliana, DREB2, Solanum lycopersicum, salinity tolerance.,
- MeSH
- Arabidopsis genetika fyziologie MeSH
- chlorid sodný farmakologie MeSH
- dehydratace MeSH
- fyziologický stres MeSH
- geneticky modifikované rostliny MeSH
- kořeny rostlin genetika fyziologie MeSH
- kyselina abscisová farmakologie MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- období sucha MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin farmakologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- semenáček genetika fyziologie MeSH
- Solanum lycopersicum genetika fyziologie MeSH
- stanovení celkové genové exprese MeSH
- tolerance k soli MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH
- kyselina abscisová MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH