conservation genomics
Dotaz
Zobrazit nápovědu
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics.
- Klíčová slova
- ERGA, European Reference Genome Atlas, biodiversity conservation, conservation genetics,
- MeSH
- biodiverzita MeSH
- genom * MeSH
- genomika * MeSH
- Publikační typ
- časopisecké články MeSH
We live in a world characterized by biodiversity loss and global environmental change. The extinction of large carnivores can have ramifying effects on ecosystems like an uncontrolled increase in wild herbivores, which in turn can have knock-on impacts on vegetation regeneration and communities. Cheetahs (Acinonyx jubatus) serve important ecosystem functions as apex predators; yet, they are quickly heading towards an uncertain future. Threatened by habitat loss, human-wildlife conflict and illegal trafficking, there are only approximately 7100 individuals remaining in nature. We present the most comprehensive genome-wide analysis of cheetah phylogeography and conservation genomics to date, assembling samples from nearly the entire current and past species' range. We show that their phylogeography is more complex than previously thought, and that East African cheetahs (A. j. raineyi) are genetically distinct from Southern African individuals (A. j. jubatus), warranting their recognition as a distinct subspecies. We found strong genetic differentiation between all classically recognized subspecies, thus refuting earlier findings that cheetahs show only little differentiation. The strongest differentiation was observed between the Asiatic and all the African subspecies. We detected high inbreeding in the Critically Endangered Iranian (A. j. venaticus) and North-western (A. j. hecki) subspecies, and show that overall cheetahs, along with snow leopards, have the lowest genome-wide heterozygosity of all the big cats. This further emphasizes the cheetah's perilous conservation status. Our results provide novel and important information on cheetah phylogeography that can support evidence-based conservation policy decisions to help protect this species. This is especially relevant in light of ongoing and proposed translocations across subspecies boundaries, and the increasing threats of illegal trafficking.
- Klíčová slova
- Acinonyx jubatus, cheetah, conservation genomics, double-digest restriction site associated DNA (ddRAD) sequencing, phylogeography,
- MeSH
- Acinonyx * genetika MeSH
- ekosystém MeSH
- genom MeSH
- genomika MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Írán MeSH
BACKGROUND: The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most researchers in the field. RESULTS: Here we present ENNGene-Easy Neural Network model building tool for Genomics. This tool simplifies training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network architecture is selected and fully customized by the user, from the number and types of the layers to each layer's precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribution level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, quickly reaching the state of the art while improving the performance on more than half of the proteins by including the evolutionary conservation score and tuning the network per protein. CONCLUSIONS: As the role of DL in big data analysis in the near future is indisputable, it is important to make it available for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics researchers without a background in Computational Sciences to harness the power of DL to gain better insights into and extract important information from the large amounts of data available in the field.
Although dairy goat production, characterized by traditional production on small farms, is an important source of income in the Czech Republic and Slovakia, locally adapted breeds have not been fully consolidated over the last 100 yr due to large fluctuations in population size and inconsistent breeding programs that allowed for different crossbreeding strategies. Our main objective in this study was therefore to assess the conservation status of 4 Czech (Alpine Goat, White Shorthair, Brown Shorthair, and Czech Landrace) and 1 Slovak (Slovak White Shorthair) local goat breeds, to analyze their population structure and admixture, and to estimate their relatedness to several neighboring breeds. Our analyses included 142 goats belonging to 5 local breeds genotyped with the Illumina 50K BeadChip, and 618 previously genotyped animals representing 15 goat breeds from Austria and Switzerland (all analyses based on 46,862 autosomal SNPs and 760 animals). In general, the conservation status of the Czech and Slovak local goat breeds was satisfactory, with the exception of the Brown Shorthair goat, as the analyzed parameters (heterozygosity, haplotype richness, runs of homozygosity-based inbreeding, and effective population size) were mostly above the median of 20 breeds. However, for all 5 Czech and Slovakian breeds, an examination of historical effective population size indicated a substantial decline about 8 to 22 generations ago. In addition, our study revealed that the Czech and Slovakian breeds are not fully consolidated; for instance, White Shorthair and Brown Shorthair were not clearly distinguishable. Considerable admixture, especially in Czech Landrace (effective number of parental clusters = 4.2), and low but numerous migration rates from other Austrian and Swiss breeds were found. These results provide valuable insights for future breeding programs and genetic diversity management of local Czech and Slovak goat breeds.
- Klíčová slova
- conservation status, diversity, genomics, goats, population structure,
- MeSH
- chov * MeSH
- genomika MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- kozy * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
Genome Resources Banks (GRBs) represent vital repositories for the systematic collection, storage, and management of genetic material across various taxa, with a primary objective of safeguarding genetic diversity for research and practical applications. Alongside the development of assisted reproductive techniques (ART), GRBs have evolved into indispensable tools in conservation, offering opportunities for species preservation, mitigating inbreeding risks, and facilitating genetic management across fragmented populations. By preserving genetic information in a suspended state, GRBs serve as backups against population vulnerabilities, potentially aiding in the restoration of endangered species and extending their genetic lifespan. While evidence demonstrates the efficacy of GRBs, ethical considerations surrounding biobanking procedures for wildlife conservation remain largely unexplored. In this article, we will discuss possible ethical issues related to GRBs and the need to ethically monitor biobanking procedures in wildlife conservation. We will then propose a methodological tool, ETHAS, already in use for the ethical self-assessment of assisted reproduction techniques, to assess also biobanking procedures. ETHAS can make it possible to monitor a GRB from its design phase to its actual operation, helping to build biobanking procedures that meet high ethical standards.
- Klíčová slova
- Conservation ethics, Ethical self-assessment, Ethical tool, Ethics of biobanking, Genome resource bank, Research ethics,
- MeSH
- asistovaná reprodukce etika MeSH
- banky biologického materiálu * etika MeSH
- divoká zvířata * MeSH
- genom MeSH
- lidé MeSH
- ohrožené druhy * MeSH
- zachování přírodních zdrojů * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microsporidia have been known for some time to possess among the smallest genomes of any eukaryote. There is now a completely sequenced microsporidian genome, as well as several other large-scale sequencing efforts, so the nature of these genomes is becoming apparent. This paper reviews some of the characteristics of microsporidian genomes in general, and some of the recent discoveries made through comparative genomic analyses. In general, microsporidian genomes are both reduced and compacted. Reduction takes place through gene loss, which is understandable in obligate intracellular parasites that rely on their host for many metabolites. Compaction is a more complex process, and is as yet not fully understood. It is clear from genomes surveyed thus far that the remaining genes are tightly packed and that there is little non-coding sequence, resulting in some extraordinary arrangements, including overlapping genes. Compaction also seems to affect certain aspects of genome evolution, like the frequency of rearrangements. The force behind this compaction is not known, and is especially interesting in light of the fact that surveys of genomes that are significantly different in size yield similar complements of protein-coding genes. There are some interesting exceptions, including catalase, photolyase and some mitochondrial proteins, but the rarity of these raises an interesting question as to what accounts for the significant differences seen in the genome sizes among microsporidia.
- MeSH
- genetická variace * MeSH
- genom fungální * MeSH
- genomika metody MeSH
- komponenty genomu genetika MeSH
- konzervovaná sekvence genetika MeSH
- Microsporidia genetika MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
BACKGROUND: The ATP-binding cassette (ABC) transporter superfamily is comprised predominantly of proteins which directly utilize energy from ATP to move molecules across the plasma membrane. Although they have been the subject of frequent investigation across many taxa, arthropod ABCs have been less well studied. While the manual annotation of ABC transporters has been performed in many arthropods, there has so far been no systematic comparison of the superfamily within this order using the increasing number of sequenced genomes. Furthermore, functional work on these genes is limited. RESULTS: Here, we developed a standardized pipeline to annotate ABCs from predicted proteomes and used it to perform comparative genomics on ABC families across arthropod lineages. Using Kruskal-Wallis tests and the Computational Analysis of gene Family Evolution (CAFE), we were able to observe significant expansions of the ABC-B full transporters (P-glycoproteins) in Lepidoptera and the ABC-H transporters in Hemiptera. RNA-sequencing of epithelia tissues in the Lepidoptera Helicoverpa armigera showed that the 7 P-glycoprotein paralogues differ substantially in their tissue distribution, suggesting a spatial division of labor. It also seems that functional redundancy is a feature of these transporters as RNAi knockdown showed that most transporters are dispensable with the exception of the highly conserved gene Snu, which is probably due to its role in cuticular formation. CONCLUSIONS: We have performed an annotation of the ABC superfamily across > 150 arthropod species for which good quality protein annotations exist. Our findings highlight specific expansions of ABC transporter families which suggest evolutionary adaptation. Future work will be able to use this analysis as a resource to provide a better understanding of the ABC superfamily in arthropods.
- Klíčová slova
- ABC transporters, Arthropod, Comparative genomics, Gene family evolution, RNAi,
- MeSH
- ABC transportéry genetika MeSH
- anotace sekvence MeSH
- členovci * genetika MeSH
- genom MeSH
- genomika MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.
- Klíčová slova
- Methylophilaceae, cultivation, genome-streamlined bacteria, genomic islands, genomic microdiversity, genomics,
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genomové ostrovy MeSH
- jezera MeSH
- Methylophilaceae * MeSH
- Publikační typ
- časopisecké články MeSH
Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.
- Klíčová slova
- Biodiversity, Climate change, Conservation, Ecosystem service, Management,
- MeSH
- biodiverzita * MeSH
- ekosystém MeSH
- klimatické změny * MeSH
- zachování přírodních zdrojů * metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH