delivery system Dotaz Zobrazit nápovědu
Here, we provide an updated set of guidelines for naming genes in wheat that has been endorsed by the wheat research community. The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.
- MeSH
- fenotyp MeSH
- jedlá semena genetika MeSH
- pšenice * genetika MeSH
- rostlinné geny MeSH
- šlechtění rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
Although many pharmaceuticals have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been effectively administered. It is due to the fact that the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) restrict them from crossing the brain to exert biological activity. This article reviews the current approaches aiming to improve penetration across these barriers for effective drug delivery to the CNS. These issues are summarized into direct systemic delivery and invasive delivery, including the BBB disruption and convection enhanced delivery. Furthermore, novel drug delivery systems used at the nanoscale, including polymeric nanoparticles, liposomes, nanoemulsions, dendrimers, and micelles are discussed. These nanocarriers could contribute to a breakthrough in the treatment of many different CNS diseases. However, further broadened studies are needed to assess the biocompatibility and safety of these medical devices.
- Klíčová slova
- Blood–brain barrier (BBB), Brain-targeted therapy, Central nervous system, Drug delivery system, Nanotechnology,
- MeSH
- centrální nervový systém * MeSH
- lékové transportní systémy * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
- Klíčová slova
- Advanced drug delivery system, Biocompatibility, Biodegradability, Cationic starch, Health care system,
- MeSH
- kationty chemie MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- polymery * chemie MeSH
- polysacharidy chemie MeSH
- poskytování zdravotní péče MeSH
- škrob * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kationty MeSH
- polymery * MeSH
- polysacharidy MeSH
- škrob * MeSH
A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.
- MeSH
- doxorubicin aplikace a dávkování farmakokinetika MeSH
- koncentrace vodíkových iontů MeSH
- lékové transportní systémy metody MeSH
- micely * MeSH
- polymery aplikace a dávkování farmakokinetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- micely * MeSH
- polymery MeSH
- Klíčová slova
- CENTRAL NERVOUS SYSTEM/wounds and injuries *, DELIVERY *,
- MeSH
- centrální nervový systém zranění MeSH
- lidé MeSH
- obvazy * MeSH
- předčasný porod * MeSH
- těhotenství MeSH
- vedení porodu * MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.
- Klíčová slova
- Apoptosis, Cancer treatment, Gallic acid, Medicinal herbs, Metastasis, Nano-scale delivery,
- MeSH
- apoptóza účinky léků MeSH
- fytogenní protinádorové látky aplikace a dávkování terapeutické užití MeSH
- kyselina gallová aplikace a dávkování terapeutické užití MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- nanočásticový lékový transportní systém * aplikace a dávkování terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fytogenní protinádorové látky MeSH
- kyselina gallová MeSH
- nanočásticový lékový transportní systém * MeSH
A wide range of drug-delivery systems are currently attracting the attention of researchers. Nanofibers are very interesting carriers for drug delivery. This is because nanofibers are versatile, flexible, nanobiomimetic and similar to extracellular matrix components, possible to be functionalized both on their surface as well as in their core, and also because they can be produced easily and cost effectively. There have been increasing attempts to use nanofibers in the construction of a range of tissues, including cartilage and bone. Nanofibers have also been favorably engaged as a drug-delivery system in cell-free scaffolds. This short overview is devoted to current applications and to further perspectives of nanofibers as drug-delivery devices in the field of cartilage and bone regeneration, and also in osteochondral reconstruction.
- Klíčová slova
- bone, cartilage, drug delivery, electrospinning, liposome, nanofiber,
- MeSH
- chrupavka cytologie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nanovlákna chemie MeSH
- regenerace kostí fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
UNLABELLED: Diltiazem hydrochloride is an antihypertensive agent which undergoes extensive first pass metabolism making it a possible candidate for buccal delivery. Diltiazem mucoadhesive buccal patches were prepared using HPMC, chitosan, PVP, PVA and carbopol. The physicochemical interactions between diltiazem and the polymers were investigated by FTIR and DSC, results revealed no interaction between drug and polymers. The patches were evaluated for various physicochemical parameters, in vitro release studies and ex vivo permeation through porcine buccal mucosa. Residual solvent content in patches was determined by gas chromatography and are largely below the tolerated limits. The formulations showed an extended release of the drug upto a period of 12 hours during ex vivo permeation and showed non Fickian drug release. Stability of the optimized formulation was investigated as per ICH guidelines and was found to be stable with respect to drug content and ex vivo permeation. KEYWORDS: diltiazem hydrochloride buccal patches residual solvents mucoadhesion in vitro drug release ex vivo permeation.
- MeSH
- adhezivita MeSH
- diltiazem * MeSH
- farmaceutická chemie MeSH
- lékové transportní systémy MeSH
- stabilita léku * MeSH
- techniky in vitro MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diltiazem * MeSH
The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.
- Klíčová slova
- alkaline pH, ascorbic acid, polyelectrolyte nanoparticles, rifampicin,
- MeSH
- diferenciální skenovací kalorimetrie MeSH
- difrakce rentgenového záření MeSH
- koncentrace vodíkových iontů MeSH
- lékové transportní systémy * MeSH
- nanočástice chemie ultrastruktura MeSH
- polyelektrolyty chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- rifampin farmakologie MeSH
- síran dextranu chemie MeSH
- spektrofotometrie ultrafialová MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- statická elektřina MeSH
- uvolňování léčiv MeSH
- velikost částic MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyelektrolyty MeSH
- rifampin MeSH
- síran dextranu MeSH
The broader application of liposomes in regenerative medicine is hampered by their short half-life and inefficient retention at the site of application. These disadvantages could be significantly reduced by their combination with nanofibers. We produced 2 different nanofiber-liposome systems in the present study, that is, liposomes blended within nanofibers and core/shell nanofibers with embedded liposomes. Herein, we demonstrate that blend electrospinning does not conserve intact liposomes. In contrast, coaxial electrospinning enables the incorporation of liposomes into nanofibers. We report polyvinyl alcohol-core/poly-ε-caprolactone-shell nanofibers with embedded liposomes and show that they preserve the enzymatic activity of encapsulated horseradish peroxidase. The potential of this system was also demonstrated by the enhancement of mesenchymal stem cell proliferation. In conclusion, intact liposomes incorporated into nanofibers by coaxial electrospinning are very promising as a drug delivery system.
- MeSH
- křenová peroxidasa metabolismus MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- liposomy chemie MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nanovlákna chemie MeSH
- nosiče léků chemie metabolismus MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- velikost částic MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- křenová peroxidasa MeSH
- liposomy MeSH
- nosiče léků MeSH