Nejvíce citovaný článek - PubMed ID 27109701
Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies
Background: Efficient theranostic strategies concurrently bring and use both the therapeutic and diagnostic features, serving as a cutting-edge tool to combat advanced cancers. Goals of the Investigation: Here, we develop stimuli-sensitive theranostics consisting of tailored copolymers forming micellar conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds, thus enabling the tumor microenvironment-sensitive activation of the photodynamic therapy (PDT) effect, fluorescence or phosphorescence. Results: The nanomedicines show superior anti-tumor PDT efficacy and huge tumor-imaging potential, while reducing their accumulation, and potentially side effects, in the liver and spleen. The developed theranostics exhibit clear selective tumor accumulation at high levels in the mouse sarcoma S180 tumor model with almost no PyF found in the healthy tissues after 48 h. Once in the tumor, illumination at λexc = 420 nm reaches the therapeutic effect due to the 1O2 generation. Indeed, an almost complete inhibition of tumor growth is observed up to 18 days after the treatment. Conclusion: The clear benefit of the specific PyF release and activation in the acidic tumor environment for the targeted delivery and tissue distribution dynamics was proved. Conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds showed their excellent antitumor PDT effect and its applicability as advanced theranostics at very low dose of PyF.
- Klíčová slova
- HPMA polymers, fluorescence imaging, pH-responsive theranostics, photodynamic therapy, tumor-targeted nanomedicines,
- MeSH
- fotochemoterapie * metody MeSH
- fotosenzibilizující látky terapeutické užití MeSH
- hydrazony terapeutické užití MeSH
- individualizovaná medicína MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nádory * diagnostické zobrazování farmakoterapie patologie MeSH
- polymery chemie MeSH
- teranostická nanomedicína metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosenzibilizující látky MeSH
- hydrazony MeSH
- polymery MeSH
Microbial resistance is one of the main problems of modern medicine. Recently, antimicrobial peptides have been recognized as a novel approach to overcome the microbial resistance issue, nevertheless, their low stability, toxicity, and potential immunogenic response in biological systems have limited their clinical application. Herein, we present the design, synthesis, and preliminary biological evaluation of polymer-antibacterial peptide constructs. The antimicrobial GKWMKLLKKILK-NH2 oligopeptide (PEP) derived from halictine, honey bee venom, was bound to a polymer carrier via various biodegradable spacers employing the pH-sensitive or enzymatically-driven release and reactivation of the PEP's antimicrobial activity. The antibacterial properties of the polymer-PEP constructs were assessed by a determination of the minimum inhibitory concentrations, followed by fluorescence and transmission electron microscopy. The PEP exerted antibacterial activity against both, gram-positive and negative bacteria, via disruption of the bacterial cell wall mechanism. Importantly, PEP partly retained its antibacterial efficacy against Staphylococcus epidermidis, Escherichia coli, and Acinetobacter baumanii even though it was bound to the polymer carrier. Indeed, to observe antibacterial activity similar to the free PEP, the peptide has to be released from the polymer carrier in response to a pH decrease. Enzymatically-driven release and reactivation of the PEP antimicrobial activity were recognized as less effective when compared to the pH-sensitive release of PEP.
- Klíčová slova
- HPMA copolymers, antimicrobial peptides, bacteria, drug delivery,
- Publikační typ
- časopisecké články MeSH
Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body. Positron emission tomography and optical imaging demonstrated enhanced tumor accumulation of the polymer carriers in 4T1-bearing mice with increased tumor-to-blood and tumor-to-muscle ratios. Additionally, there was a significant accumulation of doxorubicin bound to various polymer carriers in EL4 tumors, as well as excellent in vivo therapeutic activity in EL4 lymphoma and moderate efficacy in 4T1 breast carcinoma. The linear nanomedicine showed at least comparable pharmacologic properties to the star-like nanomedicines regarding doxorubicin transport. Therefore, if multiple parameters are considered such as its optimized structure and simple and reproducible synthesis, this polymer carrier system is the most promising for further preclinical and clinical investigations.
- Klíčová slova
- Biodistribution, Cancer, Drug delivery, HPMA, Polymeric carriers, Positron emission tomography,
- MeSH
- doxorubicin farmakokinetika MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanomedicína MeSH
- nosiče léků * chemie MeSH
- polymery * chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- doxorubicin MeSH
- nosiče léků * MeSH
- polymery * MeSH
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients' life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.
- Klíčová slova
- advanced delivery systems, biocompatibility, cardiovascular diseases, drug delivery nanosystems, targeted drug delivery,
- MeSH
- biokompatibilní materiály MeSH
- kardiovaskulární nemoci * farmakoterapie MeSH
- léky s prodlouženým účinkem MeSH
- lidé MeSH
- příprava léků MeSH
- systémy cílené aplikace léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- léky s prodlouženým účinkem MeSH
Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.
- Klíčová slova
- HPMA conjugate, anticancer, diblock conjugate, drug delivery, pirarubicin,
- Publikační typ
- časopisecké články MeSH
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
- Klíčová slova
- cancer therapy, drug delivery, inorganic nanoparticles, nanoclusters, polymeric nanoparticles, theranostics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Intravascular delivery of nanoparticles for theranostic application permits direct interaction of nanoparticles and vascular cells. Since vascular smooth muscle cells (VSMCs), the major components of the vascular wall, are constantly subjected to mechanical stimulation from hemodynamic influence, we asked whether cyclic strain may modulate internalization of magnetic nanoparticles (MNPs) by cultured VSMCs. METHODS: Cyclic strain (1 Hz and 10%) was applied with Flexcell system in cultured VSMCs from rats, with cell-associated MNPs (MNPcell) determined by a colorimetric iron assay. Transmission and scanning electron microscopy were used for morphology studies. Confocal microscopy was used to demonstrate distribution of actin assembly in VSMCs. RESULTS: Incubation of poly(acrylic acid) (PAA)-coated MNPs with VSMCs for 4 h induced microvilli formation and MNP internalization. Application of cyclic strain for 4-12 h significantly reduced MNPcell by up to 65% (p < 0.05), which was associated with blunted microvilli and reduced vesicle size/cell, but not vesicle numbers/cell. Confocal microscopy demonstrated that both cyclic strain and fibronectin coating of the culture plate reduced internalized MNPs, which were co-localized with vinculin. Furthermore, cytochalasin D reduced MNPcell, suggesting a role of actin polymerization in MNP uptake by VSMCs; however, a myosin II ATPase inhibitor, blebbistatin, exhibited no effect. Cyclic strain also attenuated uptake of PAA-MNPs by LN-229 cells and uptake of poly-L-lysine-coated MNPs by VSMCs. CONCLUSION: In such a dynamic milieu, cyclic strain may impede cellular internalization of nanocarriers, which spares the nanocarriers and augments their delivery to the target site in the lumen of vessels or outside of the circulatory system.
- Klíčová slova
- actin, cyclic strain, endocytosis, magnetic nanoparticles,
- MeSH
- biologický transport MeSH
- buněčné linie MeSH
- krysa rodu Rattus * MeSH
- magnetismus MeSH
- mechanický stres MeSH
- myocyty hladké svaloviny metabolismus MeSH
- nanočástice * metabolismus MeSH
- svaly hladké cévní MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus * MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The interaction of multi-LacNAc (Galβ1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.
- Klíčová slova
- HPMA copolymer, galectin, glycomimetic, glycopolymer, inhibition, molecular recognition, multivalency,
- MeSH
- akrylamidy chemie farmakologie MeSH
- elektronová kryomikroskopie MeSH
- galektin 1 chemie genetika MeSH
- galektiny chemie genetika MeSH
- krevní proteiny chemie genetika MeSH
- lidé MeSH
- ligandy MeSH
- methakryláty chemie farmakologie MeSH
- polymery chemie farmakologie MeSH
- sacharidy chemie MeSH
- vazba proteinů účinky léků MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akrylamidy MeSH
- galektin 1 MeSH
- galektiny MeSH
- hydroxypropyl methacrylate MeSH Prohlížeč
- krevní proteiny MeSH
- LGALS1 protein, human MeSH Prohlížeč
- LGALS3 protein, human MeSH Prohlížeč
- ligandy MeSH
- methacrylamide MeSH Prohlížeč
- methakryláty MeSH
- polymery MeSH
- sacharidy MeSH
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
- Klíčová slova
- Cancer therapy, Drug delivery, Immunotherapy, Self-assembled peptides and proteins, Stimuli-responsive, Virus-like particles,
- Publikační typ
- časopisecké články MeSH
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
- Klíčová slova
- EPR effect, HPMA copolymers, controlled release, drug delivery, nanomedicines,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH