electrophile Dotaz Zobrazit nápovědu
In laboratory experiments, many electrophilic cytotoxic agents induce cell death accompanied by reactive oxygen species (ROS) production and/or by glutathione (GSH) depletion. Not surprisingly, millimolar concentrations of N-acetylcysteine (NAC), which is used as a universal ROS scavenger and precursor of GSH biosynthesis, inhibit ROS production, restore GSH levels, and prevent cell death. The protective effect of NAC is generally used as corroborative evidence that cell death induced by a studied cytotoxic agent is mediated by an oxidative stress-related mechanism. However, any simple interpretation of the results of the protective effects of NAC may be misleading because it is unable to interact with superoxide (O2•-), the most important biologically relevant ROS, and is a very weak scavenger of H2O2. In addition, NAC is used in concentrations that are unnecessarily high to stimulate GSH synthesis. Unfortunately, the possibility that NAC as a nucleophile can directly interact with cytotoxic electrophiles to form non-cytotoxic NAC-electrophile adduct is rarely considered, although it is a well-known protective mechanism that is much more common than expected. Overall, apropos the possible mechanism of the cytoprotective effect of NAC in vitro, it is appropriate to investigate whether there is a direct interaction between NAC and the cytotoxic electrophile to form a non-cytotoxic NAC-electrophilic adduct(s).
- Klíčová slova
- N-acetylcysteine, N-acetylcysteine-electrophile adduct, electrophile, mechanism of protection, nucleophile,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fatty acid nitroalkenes (NO2-FA) are endogenously-generated products of the reaction of metabolic and inflammatory-derived nitrogen dioxide (.NO2) with unsaturated fatty acids. These species mediate signaling actions and induce adaptive responses in preclinical models of inflammatory and metabolic diseases. The nitroalkene substituent possesses an electrophilic nature, resulting in rapid and reversible reactions with biological nucleophiles such as cysteine, thus supporting post-translational modifications (PTM) of proteins having susceptible nucleophilic centers. These reactions contribute to enzyme regulation, modulation of inflammation and cell proliferation and the regulation of gene expression responses. Herein, focus is placed on the reduction-oxidation (redox) characteristics and stability of specific NO2-FA regioisomers having biological and clinical relevance; nitro-oleic acid (NO2-OA), bis-allylic nitro-linoleic acid (NO2-LA) and the conjugated diene-containing nitro-conjugated linoleic acid (NO2-cLA). Cyclic and alternating-current voltammetry and chronopotentiometry were used to the study of reduction potentials of these NO2-FA. R-NO2 reduction was observed around -0.8 V (vs. Ag/AgCl/3 M KCl) and is related to relative NO2-FA electrophilicity. This reduction process could be utilized for the evaluation of NO2-FA stability in aqueous milieu, shown herein to be pH dependent. In addition, electron paramagnetic resonance (EPR) spectroscopy was used to define the stability of the nitroalkene moiety under aqueous conditions, specifically under conditions where nitric oxide (.NO) release could be detected. The experimental data were supported by density functional theory calculations using 6-311++G (d,p) basis set and B3LYP functional. Based on experimental and computational approaches, the relative electrophilicities of these NO2-FA are NO2-cLA >> NO2-LA > NO2-OA. Micellarization and vesiculation largely define these biophysical characteristics in aqueous, nucleophile-free conditions. At concentrations below the critical micellar concentration (CMC), monomeric NO2-FA predominate, while at greater concentrations a micellar phase consisting of self-assembled lipid structures predominates. The CMC, determined by dynamic light scattering in 0.1 M phosphate buffer (pH 7.4) at 25 °C, was 6.9 (NO2-LA) 10.6 (NO2-OA) and 42.3 μM (NO2-cLA), respectively. In aggregate, this study provides new insight into the biophysical properties of NO2-FA that are important for better understanding the cell signaling and pharmacological potential of this class of mediators.
- Klíčová slova
- Electrophile, Free radical, Micelle, Nitric oxide, Nitro-fatty acid,
- MeSH
- alkeny MeSH
- dusíkaté sloučeniny * MeSH
- mastné kyseliny * MeSH
- oxid dusnatý MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- alkeny MeSH
- dusíkaté sloučeniny * MeSH
- mastné kyseliny * MeSH
- oxid dusnatý MeSH
Covalent modifications of thiol and amine groups may control the function of proteins involved in the regulatory and signaling pathways of the cell. In this study, we developed a simple cysteamine assay which can be used to study the reactivity of electrophilic compounds towards primary amine and thiol groups in an aqueous environment. The detection principle is based on the electrochemical, photometrical and mass spectrometric analyses of cysteamine (2-aminoethanethiol) as the molecular probe. This technique is useful for studying the reaction kinetics of electrophiles with thiol (SH) and amino (NH2) groups. The decrease in analytical responses of cysteamine was monitored to evaluate the reactivity of three electrophilic activators of the Nrf2 pathway, which mediates the cellular stress response. The SH-reactivity under cell-free conditions of the tested electrophiles decreased in the following order: 4-hydroxy-2-nonenal ≥ nitro-oleic acid > sulforaphane. However, as shown in RAW264.7 cells, the tested compounds activated Nrf2-dependent gene expression in the opposite order: sulforaphane > nitro-oleic acid ≥ 4-hydroxy-2-nonenal. Although other factors in addition to chemical reactivity play a role in biological systems, we conclude that this cysteamine assay is a useful tool for screening potentially bioactive electrophiles and for studying their reactivity at a molecular level.
- Klíčová slova
- Cysteamine assay, Electrochemistry, Hydrophilic interaction chromatography, Nrf2 pathway, Thiol reactivity,
- MeSH
- hmotnostní spektrometrie MeSH
- kinetika MeSH
- merkaptamin * farmakologie MeSH
- signální transdukce MeSH
- sulfhydrylové sloučeniny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- merkaptamin * MeSH
- sulfhydrylové sloučeniny * MeSH
The oxidative stress plays an important role in the development of cardiovascular diseases (CVD). In CVD progression an aberrant redox regulation was observed. In this regulation levels of reactive oxygen species (ROS) play an important role in cellular signaling, where Nrf2 is the key regulator of redox homeostasis. Keap1-Nrf2-ARE system regulates a great set of detoxificant and antioxidant enzymes in cells after ROS and electrophiles exposure. In this review we focus on radical-generating systems in cardiovascular system as well as on Nrf2 as a target against oxidative stress and a key player of redox regulation in cardiovascular diseases. We also summarize the current knowledge about the role of Nrf2 in pathophysiology of several CVD (hypertension, cardiac hypertrophy, cardiomyopathies) as well as in cardioprotection against myocardial ischemia/ reperfusion injury.
- MeSH
- antioxidační responzivní elementy * MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- kardiovaskulární nemoci metabolismus MeSH
- lidé MeSH
- oxidační stres * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- faktor 2 související s NF-E2 MeSH
- NFE2L2 protein, human MeSH Prohlížeč
Initial studies on electrophilic halogenation of the dicarbaborane closo-1,2-C2B8H10 (1) have been carried out to reveal that the substitution takes place at B7 and B10 vertexes, which are the most removed from the CH positions. The course of the halogenation is strongly dependent on the nature of the halogenation agent and reaction conditions. Individual reactions led to the isolation of the monosubstituted compounds 1,2-C2B8H9-10-X (2) (where X = F, I) and 1,2-C2B8H9-7-X (3) (where X = Cl, I). Disubstituted carboranes 1,2-C2B8H8-7,10-X2 (4) (where X = Cl, Br, I) were obtained under more forcing conditions. Individual halo derivatives were characterized by mass spectrometry and high-field NMR (11B, 1H,13C) spectroscopy combined with two-dimensional [11B-11B]-COSY, 1H{11B(selective)}, and [11B-1H]-correlation NMR techniques. All of the derivatives bearing a halogen substituent in the B10 position exhibit a remarkable antipodal 13C and 1H NMR shielding at the CH1 vertex, increasing in the order H < I < Br < Cl < F. The structures of 1,2-C2B8H8-7,10-X2 derivatives (where X = Cl, I, 4b,d) were established by X-ray diffraction analyses.
- Publikační typ
- časopisecké články MeSH
Efficient protocols enabling the rapid installation of trifluoromethyl, as well as further functionalized fluoroalkyl groups by an electrophilic perfluoroalkylation of lactam-derived ketene silyl amides (KSAs) using hypervalent iodine reagents 1 and 2 have been developed.
- MeSH
- ethyleny chemie MeSH
- fluorované uhlovodíky chemická syntéza chemie MeSH
- indikátory a reagencie chemie MeSH
- jod chemie MeSH
- katalýza MeSH
- ketony chemie MeSH
- laktamy chemická syntéza chemie MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ethyleny MeSH
- fluorované uhlovodíky MeSH
- indikátory a reagencie MeSH
- jod MeSH
- ketene MeSH Prohlížeč
- ketony MeSH
- laktamy MeSH
The stilbenoids, a group of naturally occurring phenolic compounds, are found in a variety of plants, including some berries that are used as food or for medicinal purposes. They are known to be beneficial for human health as anti-inflammatory, chemopreventive, and antioxidative agents. We have investigated a group of 19 stilbenoid substances in vitro using a cellular model of THP-1 macrophage-like cells and pyocyanin-induced oxidative stress to evaluate their antioxidant or pro-oxidant properties. Then we have determined any effects that they might have on the expression of the enzymes catalase, glutathione peroxidase, and heme oxygenase-1, and their effects on the activation of Nrf2. The experimental results showed that these stilbenoids could affect the formation of reactive oxygen species in a cellular model, producing either an antioxidative or pro-oxidative effect, depending on the structure pinostilbene (2) worked as a pro-oxidant and also decreased expression of catalase in the cell culture. Piceatannol (4) had shown reactive oxygen species (ROS) scavenging activity, whereas isorhapontigenin (18) had a mild direct antioxidant effect and activated Nrf2-antioxidant response element (ARE) system and elevated expression of Nrf2 and catalase. Their effects shown on cells in vitro warrant their further study in vivo.
- Klíčová slova
- Nrf2, antioxidant, macrophages, pro-oxidant, pyocyanin, stilbenoid,
- MeSH
- antioxidační responzivní elementy účinky léků MeSH
- antioxidancia chemie farmakologie MeSH
- buňky Hep G2 MeSH
- faktor 2 související s NF-E2 genetika MeSH
- lidé MeSH
- peroxidace lipidů účinky léků MeSH
- pyokyanin chemie MeSH
- stilbeny chemie farmakologie MeSH
- thiobarbituráty chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- faktor 2 související s NF-E2 MeSH
- NFE2L2 protein, human MeSH Prohlížeč
- pyokyanin MeSH
- stilbeny MeSH
- thiobarbituráty MeSH
- thiobarbituric acid MeSH Prohlížeč
The aryltellurenyl cation [2-(tBuNCH)C6 H4 Te]+ , a Lewis super acid, and the weakly coordinating carborane anion [CB11 H12 ]- , an extremely weak Brønsted acid (pKa =131.0 in MeCN), form an isolable ion pair complex [2-(tBuNCH)C6 H4 Te][CB11 H12 ], in which the Brønsted acidity (pKa 7.4 in MeCN) of the formally hydridic B-H bonds is dramatically increased by more than 120 orders of magnitude. The electrophilic activation of B-H bonds in the carborane moiety gives rise to a proton transfer from boron to nitrogen at slightly elevated temperatures, as rationalized by the isolation of a mixture of the zwitterionic isomers 12- and 7-[2-(tBuN{H}CH)C6 H4 Te(CB11 H11 )] in ratios ranging from 62 : 38 to 80 : 20.
- Klíčová slova
- Lewis superacids, bond activation, boron, carboranes, tellurium,
- Publikační typ
- časopisecké články MeSH
The formation and detailed spectroscopic characterization of the first biuret-containing monoanionic superoxido-NiII intermediate [LNiO2 ]- as the Li salt [2; L=MeN[C(=O)NAr)2 ; Ar=2,6-iPr2 C6 H3 )] is reported. It results from oxidation of the corresponding [Li(thf)3 ]2 [LNiII Br2 ] complex M with excess H2 O2 in the presence of Et3 N. The [LNiO2 ]- core of 2 shows an unprecedented nucleophilic reactivity in the oxidative deformylation of aldehydes, in stark contrast to the electrophilic character of the previously reported neutral Nacnac-containing superoxido-NiII complex 1, [L'NiO2 ] (L'=CH(CMeNAr)2 ). According to density-functional theory (DFT) calculations, the remarkably different behaviour of 1 versus 2 can be attributed to their different charges and a two-state reactivity, in which a doublet ground state and a nearby spin-polarized doublet excited-state both contribute in 1 but not in 2. The unexpected nucleophilicity of the superoxido-NiII core of 2 suggests that such a reactivity may also play a role in catalytic cycles of Ni-containing oxygenases and oxidases.
- Klíčová slova
- dioxygen ligands, nickel, structure elucidation, structure-activity relationships, two-state reactivity,
- MeSH
- komplexní sloučeniny chemie MeSH
- kvantová teorie MeSH
- kyslík chemie MeSH
- lithium chemie MeSH
- molekulární modely MeSH
- nikl chemie MeSH
- oxidace-redukce MeSH
- oxidoreduktasy chemie MeSH
- oxygenasy chemie MeSH
- soli chemie MeSH
- superoxidy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- komplexní sloučeniny MeSH
- kyslík MeSH
- lithium MeSH
- nikl MeSH
- oxidoreduktasy MeSH
- oxygenasy MeSH
- soli MeSH
- superoxidy MeSH
Metal-free cascade reaction of NH-1,2,3-triazoles with one-carbon electrophiles, such as thiophosgene and triphosgene, led to N-vinylated ring cleavage products. Using this approach the synthesis of N-vinylisothiocyanates from NH-triazoles and thiophosgene was achieved. A variety of multifunctional compounds, such as N-vinylcarbamates, unsymmetrical vinylureas, carbamothioates, etc. was prepared by a one-pot method from NH-triazoles, triphosgene and nucleophiles.
- Publikační typ
- časopisecké články MeSH