habitat Dotaz Zobrazit nápovědu
Orchids are distributed around the world, however, the factors shaping their specific distribution and habitat preferences are largely unknown. Moreover, many orchids are at risk of becoming threatened as landscapes change, sometimes declining without apparent reason. One important factor affecting plant distribution is nutrient levels in the environment. Nitrates can inhibit not only orchid growth and persistence, but also seed germination. We used in vitro axenic cultures to exactly determine the germination sensitivity of seven orchid species to nitrates and correlated this with soil properties of the natural sites and with the species' habitat preferences. We found high variation in response to nitrate between species. Orchids from oligotrophic habitats were highly sensitive, while orchids from more eutrophic habitats were almost insensitive. Sensitivity to nitrate was also associated with soil parameters that indicated a higher nitrification rate. Our results indicate that nitrate can affect orchid distribution via direct inhibition of seed germination. Nitrate levels in soils are increasing rapidly due to intensification of agricultural processes and concurrent soil pollution, and we propose this increase could cause a decline in some orchid species.
- Klíčová slova
- Orchidaceae, in vitro, Distribution, germination, habitat, nitrate, nitrogen,
- MeSH
- dusičnany * analýza toxicita MeSH
- ekosystém * MeSH
- Orchidaceae * účinky léků fyziologie MeSH
- půda * chemie MeSH
- semena rostlinná * účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusičnany * MeSH
- půda * MeSH
Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.
- Klíčová slova
- climate change, edaphic factors, fens, habitat types, peatlands,
- MeSH
- biodiverzita MeSH
- Bryophyta * MeSH
- cévnaté rostliny * MeSH
- ekosystém MeSH
- mokřady MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
Anthropogenic habitat modification significantly challenges biodiversity. With its intensification, understanding species' capacity to adapt is critical for conservation planning. However, little is known about whether and how different species are responding, particularly among frogs. We used a continental-scale citizen science dataset of >226,000 audio recordings of 42 Australian frog species to investigate how calling-a proxy for breeding-phenology varied along an anthropogenic modification gradient. Calling started earlier and breeding seasons lengthened with increasing modification intensity. Breeding seasons averaged 22.9 ± 8.25 days (standard error) longer in the most modified compared to the least modified regions, suggesting that frog breeding activity was sensitive to habitat modification. We also examined whether calls varied along a modification gradient by analysing the temporal and spectral properties of advertisement calls from a subset of 441 audio recordings of three broadly distributed frog species. There was no appreciable effect of anthropogenic habitat modification on any of the measured call variables, although there was high variability. With continued habitat modification, species may shift towards earlier and longer breeding seasons, with largely unknown ecological consequences in terms of proximate and ultimate fitness.
- Klíčová slova
- Australian frogs, advertisement call, bioacoustics, breeding season, citizen science, urbanization, vocal communication,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- roční období MeSH
- žáby * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Austrálie MeSH
A comparison of 95 species of Central European moths, representing 11 families and inhabiting various habitats, was carried out in order to detect the potential impact of biotope on the ultraviolet (UV) light reflectance of their wings. Based on digitized photographs taken under UV light conditions, a phylogeny-controlled redundancy analysis relating UV reflectance to preferred habitat type (xerophilous, mesophilous, and hygrophilous) and habitat openness (open, semiopen, and closed) was carried out. Species preferring hygrophilous habitats displayed significantly higher UV wing reflectance than species inhabiting xerothermic and mesic habitats, and this pattern remained significant even after controlling for phyletic relationships. In contrast, UV wing reflectance displayed no pattern related to habitat openness. Given the higher UV reflectance of water and humid surfaces, we interpret these results, which are based on the first comprehensive sampling of UV reflectance in Central European moths, in terms of predator avoidance under habitat-specific light conditions. We conclude that the moisture content of the environment may markedly contribute to the variation of appearance of moth wings for better imitation habitat characteristics and therefore to increase protection.
- Klíčová slova
- Lepidoptera, mimicry, phylogeny, ultraviolet reflectance,
- MeSH
- ekosystém * MeSH
- křídla zvířecí fyziologie MeSH
- můry fyziologie MeSH
- pigmentace MeSH
- ultrafialové záření * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Anthropogenic habitat modification is accelerating, threatening the world's biodiversity. Understanding species' responses to anthropogenic modification is vital for halting species' declines. However, this information is lacking for globally threatened amphibians, informed primarily by small community-level studies. We integrated >126,000 verified citizen science observations of frogs, with a global continuous measure of anthropogenic habitat modification for a continental scale analysis of the effects of habitat modification on frogs. We derived a modification tolerance index-accounting for anthropogenic stressors such as human habitation, agriculture, transport and energy production-for 87 species (36% of all Australian frog species). We used this index to quantify and rank each species' tolerance of anthropogenic habitat modification, then compiled traits of all the frog species and assessed how well these equipped species to tolerate modified habitats. Most of Australia's frog species examined were adversely affected by habitat modification. Habitat specialists and species with large geographic range sizes were the least tolerant of habitat modification. Call dominant frequency, body size, clutch type and calling position (i.e. from vegetation) were also related to tolerance of habitat modification. There is an urgent need for improved consideration of anthropogenic impacts and improved conservation measures to ensure the long-term persistence of frog populations, particularly focused on specialists and species identified as intolerant of modified habitats.
- Klíčová slova
- amphibian declines, anthropogenic, biodiversity, citizen science, conservation, habitat modification, life history, species traits,
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- lidé MeSH
- žáby MeSH
- zachování přírodních zdrojů MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Austrálie MeSH
Structural complexity of habitats modifies trophic interactions by providing refuges and altering predator and prey behaviour. Nonlinear effects on trophic interaction strengths driven by these mechanisms may alter food web dynamics and community structure in response to habitat modifications. However, changes in functional response, the relationship between prey density and feeding rate, along habitat complexity (HC) gradients are little understood. We quantified functional responses along a HC gradient from an entirely unstructured to highly structured habitat in a freshwater system, using dragonfly larvae (Aeshna cyanea) preying on Chaoborus obscuripes larvae. To disentangle mechanisms by which changes in HC affect functional responses, we used two different approaches-a population-level and a behavioural experiment-applied an information theoretic approach to identify plausible links between HC and functional response parameters, and compared our results to previous studies. Functional response shape did not change, but we found strong evidence for nonlinear dependence of attack rate and handling time on HC in our study. Combined results from both experiments imply that attack rate increased stepwise between the unstructured and structured habitats in line with the threshold hypothesis, because the predators gained better access to the prey. Handling time was lowest at an intermediate HC level in the population-level experiment while the direct estimate of handling time did not vary with HC in the behavioural experiment. These differences point towards HC-driven changes in foraging activity and other predator and prey behaviour. Most previous studies reported stepwise decrease in attack rate in line with the threshold hypothesis or no change with increasing HC. Moreover, changes in the handling time parameter with HC appear to be relatively common but not conforming to the threshold hypothesis. Overall, increased HC appears to, respectively, weaken and strengthen trophic links in 2D and 3D predator-prey interactions. We conclude that detailed understanding of HC effects on food webs requires complementary experimental approaches across HC gradients that consider predator foraging strategies and predator and prey behaviour. Such studies can also help guide conservation efforts as addition of structural elements is frequently used for restoration of degraded aquatic habitats.
- Klíčová slova
- Aeshna, Chaoborus, attack rate, dimensionality of predator-prey interactions, habitat domain, handling time, refuge, threshold hypothesis,
- MeSH
- ekosystém MeSH
- larva MeSH
- potravní řetězec MeSH
- predátorské chování * MeSH
- vážky * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Increasing nitrogen depositions adversely affect European landscapes, including habitats within the Natura2000 network. Critical loads for nitrogen deposition have been established to quantify the loss of habitat quality. When the nitrogen deposition rises above a habitat-specific critical load, the quality of the focal habitat is expected to be negatively influenced. Here, we investigate how the quality of habitat types is affected beyond the critical load. We calculated response curves for 60 terrestrial habitat types in the Netherlands to the estimated nitrogen deposition (EMEP-data). The curves for habitat types are based on the occurrence of their characteristic plant species in North-Western Europe (plot data from the European Vegetation Archive). The estimated response curves were corrected for soil type, mean annual temperature and annual precipitation. Evaluation was carried out by expert judgement, and by comparison with gradient deposition field studies. For 39 habitats the response to nitrogen deposition was judged to be reliable by five experts, while out of the 41 habitat types for which field studies were available, 25 showed a good agreement. Some of the curves showed a steep decline in quality and some a more gradual decline with increasing nitrogen deposition. We compared the response curves with both the empirical and modelled critical loads. For 41 curves, we found a decline already starting below the critical load.
- Klíčová slova
- Ammonia, Biodiversity, Critical load, European Vegetation Archive (EVA), Habitat type, Nitrate, Response curve,
- MeSH
- dusík * analýza MeSH
- ekosystém * MeSH
- monitorování životního prostředí * metody MeSH
- půda chemie MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nizozemsko MeSH
- Názvy látek
- dusík * MeSH
- půda MeSH
Several studies have demonstrated that floras of the New World contain larger proportions of alien species than those of the Old World; however, the differences in fine-scale invasion patterns are poorly known. We compared the levels of invasion in analogous habitats of two environmentally similar regions in temperate North America and Europe (the Carolinas and the Czech Republic), using comprehensive vegetation-plot databases. Native and alien vascular plant species were identified within 4165 vegetation plots assigned to 12 habitats occurring in both areas. The level of invasion was calculated for each habitat (1) as the proportion of aliens recorded cumulatively across multiple plots (habitat scale) and (2) as the mean proportion of aliens per plot (plot scale), both separately for all alien species and for the subgroup of aliens originating in one region and invading the other. The proportions of species native on one continent and invading the other were also calculated for each habitat to compare the alien species exchange between continents. Habitat levels of invasion showed remarkably similar patterns on the two continents. There were significant positive relationships for the levels of invasion, both for all alien species (habitat-scale R2 = 0.907; plot-scale R2 = 0.676) and for those that originated on the opposite continent (habitat-scale R2 = 0.624; plot-scale R2 = 0.708). In both regions, the most and the least invaded habitats were the same, but on average, North American habitats showed higher habitat-scale levels of invasion than their European counterparts. At the same time, a larger proportion of alien species was provided by European habitats for invasion to North America than vice versa. The consistent intercontinental pattern of habitat levels of invasion suggests that these levels are driven by similar mechanisms in distant regions. Habitat conditions are likely to have stronger effect on the level of invasion than the identity of alien species, as shown by similar levels of invasion in analogous habitats despite different geographical origins of alien species. The higher flux of alien species from Europe to North America is consistent with a generally higher level of invasion of North American habitats.
- MeSH
- ekosystém * MeSH
- podnebí MeSH
- rostliny klasifikace MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Jižní Karolína MeSH
- Severní Karolína MeSH
Locomotion is an important, fitness-related functional trait. Environment selects for type of locomotion and shapes the morphology of locomotion-related traits such as body size and appendages. In subterranean aquatic arthropods, these traits are subjected to multiple, at times opposing selection pressures. Darkness selects for enhanced mechano- and chemosensory systems and hence elongation of appendages. Conversely, water currents have been shown to favor short appendages. However, no study has addressed the variation in locomotion of invertebrates inhabiting cave streams and cave lakes, or questioned the relationship between species' morphology and locomotion. To fill this knowledge gap, we studied the interplay between habitat use, morphology and locomotion in amphipods of the subterranean genus Niphargus. Previous studies showed that lake and stream species differ in morphology. Namely, lake species are large, stout and long-legged, whereas stream species are small, slender and short-legged. We here compared locomotion mode and speed between three lake and five stream species. In addition, we tested whether morphology predicts locomotion. We found that the stream species lie on their body sides and move using slow crawling or tail-flipping. The species inhabiting lakes move comparably faster, and use a variety of locomotion modes. Noteworthy, one of the lake species almost exclusively moves in an upright or semi-upright position that resembles walking. Body size and relative length of appendages predict locomotion mode and speed in all species. We propose that integrating locomotion in the studies of subterranean species might improve our understanding of their morphological evolution.
- Klíčová slova
- Niphargus, appendage length, body size, habitat use, locomotion, subterranean environment,
- MeSH
- Amphipoda fyziologie MeSH
- chování zvířat MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- lokomoce * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the past century, grasslands in Europe have undergone marked changes in land-use, leading to a decline in plant diversity both at local and regional scales, thus possibly also affecting the mechanisms of species sorting into local communities. We studied plant species assembly in grasslands with differing habitat history and hypothesised that trait divergence prevails in historical grasslands due to niche differentiation and trait convergence prevails in more dynamic grasslands due to competitive exclusion and dispersal limitation. We tested these hypotheses in 35 grassland complexes in Estonia, containing neighbouring grassland habitats with different land-use histories: continuously managed open historical grassland, currently overgrown former grassland and young developing grassland. We assessed species assembly patterns in each grassland type for finer scale-a 2 × 2 m plot scale from a local community pool and for broader scale-a local community from the habitat species pool for that grassland stage and observed changes in trait means at finer scale. We found that grasslands with long management history are assembled differently from former grasslands or young developing grasslands. In historical grasslands, divergence or random patterns prevailed at finer scale species assembly while in former or developing grasslands, mostly convergence patterns prevailed. With increasing scale convergence patterns become more prevalent in all grassland types. We conclude that land-use history is an important factor to consider when assessing grassland functional trait assembly, particularly at small scales. Understanding the mechanisms behind species assembly and their relationship with land-use history is vital for habitat conservation and restoration.
- Klíčová slova
- Environmental filtering, Functional diversity, Land-use change, Limiting similarity, Species pool,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- pastviny * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Estonsko MeSH
- Evropa MeSH