meiotic drive Dotaz Zobrazit nápovědu
Similar to how the model of centromere drive explains the size and complexity of centromeres in monocentrics (organisms with localized centromeres), our model of holokinetic drive is consistent with the divergent evolution of chromosomal size and number in holocentrics (organisms with nonlocalized centromeres) exhibiting holokinetic meiosis (holokinetics). Holokinetic drive is proposed to facilitate chromosomal fission and/or repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited or chromosomal fusion and/or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. The hypothesis of holokinetic drive is supported primarily by the negative correlation between chromosome number and genome size that is documented in holokinetic lineages. The supporting value of two older cross-experiments on holokinetic structural heterozygotes (the rush Luzula elegans and butterflies of the genus Antheraea) that indicate the presence of size-preferential homolog transmission via female meiosis for holokinetic drive is discussed, along with the further potential consequences of holokinetic drive in comparison with centromere drive.
- Klíčová slova
- Centromere drive, holokinetic chromosomes, holokinetic drive, karyotype, meiotic drive,
- MeSH
- centromera genetika MeSH
- chromozomy genetika MeSH
- fylogeneze MeSH
- karyotyp MeSH
- lipnicovité genetika MeSH
- meióza * MeSH
- molekulární evoluce * MeSH
- motýli genetika MeSH
- segregace chromozomů MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is notable that the occurrence of multiple sex chromosomes differs significantly between major lineages of amniote vertebrates. In this respect, birds are especially conspicuous, as multiple sex chromosomes have not been observed in this lineage so far. On the other hand, in mammals, multiple sex chromosomes have evolved many times independently. We hypothesize that this contrast can be related to the different involvement of sex-specific sex chromosomes in female meiosis subjected to the female meiotic drive under male versus female heterogamety. Essentially, the male-specific Y chromosome is not involved in female meiosis and is therefore sheltered against the effects of the female meiotic drive affecting the X chromosome and autosomes. Conversely, the Z and W sex chromosomes are both present in female meiosis. Nonrandom segregation of these sex chromosomes as a consequence of their rearrangements connected with the emergence of multiple sex chromosomes would result in a biased sex ratio, which should be penalized by selection. Therefore, the emergence of multiple sex chromosomes should be less constrained in the lineages with male rather than female heterogamety. Our broader phylogenetic comparison across amniotes supports this prediction. We suggest that our results are consistent with the widespread occurrence of female meiotic drive in amniotes.
- MeSH
- fylogeneze MeSH
- meióza fyziologie MeSH
- modely genetické MeSH
- plazi genetika MeSH
- pohlavní chromozomy genetika MeSH
- ptáci genetika MeSH
- savci genetika MeSH
- segregace chromozomů fyziologie MeSH
- typy dědičnosti genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.
- MeSH
- centromera genetika MeSH
- histony genetika MeSH
- houby genetika MeSH
- kodon genetika MeSH
- lidé MeSH
- meióza genetika MeSH
- molekulární evoluce * MeSH
- protein CENP-A genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CENPA protein, human MeSH Prohlížeč
- histony MeSH
- kodon MeSH
- protein CENP-A MeSH
- rostlinné proteiny MeSH
Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long evolutionary separation. We conclude that they have in a convergent manner accumulated similar patterns of tandem inversions and dense repeat clusters, presumably in response to similar needs to create linkage between genes causing drive and resistance.
Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.
- Klíčová slova
- CenH3, asymmetric meiosis, centromere drive, holocentric chromosomes, meiotic drive, monocentric chromosomes, symmetric meiosis,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS: We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS: Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS: Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
- Klíčová slova
- Angiosperms, CENH3, asymmetric and symmetric meiosis, bryophytes, centromere drive, chromosome size, ferns, genome size, gymnosperms, lycophytes, post-polyploid diploidization,
- MeSH
- biologická evoluce MeSH
- centromera * genetika MeSH
- chromozomy rostlin * genetika MeSH
- cykasy genetika MeSH
- délka genomu * MeSH
- fylogeneze MeSH
- genom rostlinný * genetika MeSH
- histony genetika metabolismus MeSH
- kapradiny genetika fyziologie MeSH
- Magnoliopsida genetika MeSH
- meióza * genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- rostliny genetika MeSH
- selekce (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.
- Klíčová slova
- B chromosome, genetic drive, nondisjunction, preferential fertilization,
- MeSH
- chromozomy rostlin genetika MeSH
- kukuřice setá genetika MeSH
- meióza genetika MeSH
- mitóza genetika MeSH
- molekulární evoluce * MeSH
- pyl genetika MeSH
- těhotenské proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- těhotenské proteiny MeSH
BACKGROUND AND AIMS: The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. METHODS: PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula KEY RESULTS: In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. CONCLUSIONS: The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive.
- Klíčová slova
- CenH3, Luzula, centromere drive, holokinetic chromosomes, positive selection,
- MeSH
- centromera genetika MeSH
- chromozomy rostlin genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- histony genetika MeSH
- Magnoliopsida genetika MeSH
- meióza genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- selekce (genetika) genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
B chromosomes (Bs) are supernumerary chromosomes, which are often preferentially inherited. When transmission rates of chromosomes are higher than 0.5, not obeying the Mendelian law of equal segregation, the resulting transmission advantage is collectively referred to as 'chromosome drive'. Here we analysed the drive mechanism of Aegilops speltoides Bs. The repeat AesTR-183 of A. speltoides Bs, which also can be detected on the Bs of Aegilops mutica and rye, was used to track Bs during pollen development. Nondisjunction of CENH3-positive, tubulin interacting B sister chromatids and an asymmetric spindle during first pollen grain mitosis are key for the accumulation process. A quantitative flow cytometric approach revealed that, independent of the number of Bs present in the mother plant, Bs accumulate in the generative nuclei to > 93%. Nine out of 11 tested (peri)centromeric repeats were shared by A and B chromosomes. Our findings provide new insights into the process of chromosome drive. Quantitative flow cytometry is a useful and reliable method to study the drive frequency of Bs. Nondisjunction and unequal spindle organization accompany during first pollen mitosis the drive of A. speltoides Bs. The prerequisites for the drive process seems to be common in Poaceae.
- Klíčová slova
- Aegilops speltoides, asymmetric spindle, centromere, chromosome drive, chromosome nondisjunction, flow cytometry, pollen grain mitosis, supernumerary B chromosome,
- MeSH
- Aegilops genetika MeSH
- aparát dělícího vřeténka metabolismus MeSH
- buněčné jádro genetika MeSH
- centromera metabolismus MeSH
- chromozomy rostlin genetika MeSH
- konzervovaná sekvence genetika MeSH
- mitóza genetika MeSH
- nondisjunkce genetická * MeSH
- pyl genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- sekvence nukleotidů MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis.
- MeSH
- Caenorhabditis elegans genetika metabolismus MeSH
- centromera metabolismus fyziologie MeSH
- chromozomální proteiny, nehistonové genetika metabolismus fyziologie MeSH
- chromozomy metabolismus MeSH
- geneticky modifikované organismy MeSH
- histony genetika fyziologie MeSH
- meióza genetika fyziologie MeSH
- pohyb fyziologie MeSH
- segregace chromozomů genetika fyziologie MeSH
- selekce (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- centromere protein C MeSH Prohlížeč
- chromozomální proteiny, nehistonové MeSH
- histony MeSH