memory binding Dotaz Zobrazit nápovědu
Innovative memory paradigms have been introduced to capture subtle memory changes in early Alzheimer's disease (AD). We aimed to examine the associations between different indexes of the challenging Memory Binding Test (MBT) and hippocampal volume (HV) in a sample of individuals with subjective cognitive decline (SCD; n = 50), amnestic mild cognitive impairment (aMCI) due to AD (n = 31), and cognitively normal (CN) older adults (n = 29) recruited from the Czech Brain Aging Study, in contrast to traditional verbal memory tests. Both MBT free and cued recall scores in immediate and delayed recall conditions were associated with lower HV in both SCD and aMCI due to AD, whereas in traditional verbal memory tests only delayed recall scores were associated with lower HV. In SCD, the associations with lower HV in the immediate recall covered specific cued recall indexes only. In conclusion, the MBT is a promising test for detecting subtle hippocampal-associated memory decline during the predementia continuum.
- Klíčová slova
- Alzheimer’s disease, challenging tests, free and cued verbal memory, medial temporal lobe atrophy, mild cognitive impairment, semantic memory binding, subjective cognitive decline,
- MeSH
- demence * diagnóza MeSH
- hipokampus MeSH
- kognice MeSH
- krátkodobá paměť MeSH
- lidé MeSH
- rozpomínání * MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Episodic memory, the ability to recall specific events and experiences, is a cornerstone of human cognition with profound clinical implications. While animal studies have provided valuable insights into the neuronal underpinnings of episodic memory, research has largely relied on a limited subset of tasks that model only some aspects of episodic memory. In this narrative review, we provide an overview of rodent episodic-like memory tasks that expand the methodological repertoire and diversify the approaches used in episodic-like memory research. These tasks assess various aspects of human episodic memory, such as integrated what-where-when or what-where memory, source memory, free recall, temporal binding, and threshold retrieval dynamics. We review each task's general principle and consider whether alternative non-episodic mechanisms can account for the observed behavior. While our list of tasks is not exhaustive, we hope it will guide researchers in selecting models that align with their specific research objectives, leading to novel advancements and a more comprehensive understanding of mechanisms underlying specific aspects of episodic memory.
- Klíčová slova
- episodic memory, hippocampus, recollection, source memory, temporal binding, what–where–when,
- MeSH
- epizodická paměť * MeSH
- lidé MeSH
- neurovědy metody MeSH
- rozpomínání fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Memory impairment has been considered as one of the earliest clinical hallmarks of Alzheimer's disease. This paper summarizes recent progress in the assessment of memory impairment in predementia stages. New promising approaches of memory assessment include evaluation of longitudinal cognitive changes, assessment of long-term memory loss, evaluation of subjective cognitive concerns and testing of other memory modalities, such as spatial memory. In addition, we describe new challenging memory tests based on memory binding paradigms that have been recently developed and are currently being validated.
- Klíčová slova
- Alzheimer's disease, Elderly, memory binding, memory impairment, mild cognitive impairment, neuropsychological assessment, spatial memory, subjective cognitive decline.,
- MeSH
- Alzheimerova nemoc komplikace diagnóza MeSH
- časná diagnóza * MeSH
- lidé MeSH
- poruchy paměti diagnóza etiologie MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVE: The present study aims to examine whether declarative memory dysfunction relates to impaired core memory mechanisms or attentional and executive dysfunction in idiopathic REM Sleep Behavior Disorder (iRBD). METHOD: In this observational, cross-sectional study, were enrolled 82 individuals with the diagnosis of iRBD according to the International Classification of Sleep Disorders and 49-matched healthy controls fulfilling inclusion criteria. All participants underwent two memory tasks, namely the Rey Auditory Verbal Learning Test (RAVLT) and Memory Binding Test (MBT), which include conditions of varying degrees of dependence on executive functioning, as well as different indicators of core memory processes (e.g., learning, retention, relational binding). RESULTS: We used Bayesian multivariate generalized linear model analysis to evaluate the effect of iRBD on memory performance controlled for effects of age and sex. Individuals with iRBD displayed worse memory performance in the delayed free recall task (b = -0.37, 95% PPI [-0.69, -0.05]), but not on delayed recognition of the same material. Their performance in cued recall tasks both in immediate and delayed conditions was in comparison to controls relatively spared. Moreover, the deficit in delayed free recall was mediated by attention/processing speed. CONCLUSIONS: In iRBD, we replicated findings of reduced free recall based on inefficient retrieval (retrieval deficit), which was small in terms of effect size. Importantly, the memory profile across measures does not support the presence of core memory dysfunction, such as poor learning, retention or associative binding.
- Klíčová slova
- RBD (rapid eye movement (REM) sleep behavior disorder), cued recall, free recall, iRBD (idiopathic rapid eye movement (REM) sleep behavior disorder), memory binding, memory impairment,
- MeSH
- Bayesova věta MeSH
- kognitivní dysfunkce * diagnóza MeSH
- lidé MeSH
- neuropsychologické testy MeSH
- porucha chování v REM spánku * komplikace MeSH
- poruchy paměti diagnóza MeSH
- průřezové studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
Prenatal exposure to caffeine can cause developmental problems. This study determined chronic influence of prenatal caffeine at relatively higher doses on cognitive functions in the rat offspring. Pregnant Sprague-Dawley rats (4-month-old) were exposed to caffeine (20 mg/kg, twice a day) for whole pregnancy from gestational day 4. Fetal and offspring body and brain weight was measured. Learning and memory were tested in adult offspring with Morris water maze. Learning and memory-related receptors were measured. The exposure to prenatal caffeine not only caused fetal growth restriction, but also showed long-term effects on learning and memory in the offspring. The caffeine offspring exhibited longer escape latency and path length in navigation testing. The number of passing the target was significantly reduced in those offspring. The expression of adenosine A(1) and A(2A) receptors, nuclear PKA C(alpha), C(beta) subunits, and pCREB were significantly increased in the fetal and neonatal brain, and suppressed in the hippocampus of the adult offspring. The expression of BDNF and TrkB were reduced regardless of various ages. The results suggest that intrauterine programming dysfunction of adenosine receptors and the down-stream of cAMP/PKA/pCREB system may play an important role in prenatal caffeine induced cognition disorders in the adult offspring.
- MeSH
- bludiště - učení účinky léků fyziologie MeSH
- kofein toxicita MeSH
- krysa rodu Rattus MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- paměť účinky léků fyziologie MeSH
- poruchy paměti chemicky indukované diagnóza metabolismus MeSH
- potkani Sprague-Dawley MeSH
- protein vázající cAMP responzivní element metabolismus MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- purinergní receptory P1 metabolismus MeSH
- signální transdukce účinky léků fyziologie MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice chemicky indukované diagnóza metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Bdnf protein, rat MeSH Prohlížeč
- Creb1 protein, rat MeSH Prohlížeč
- kofein MeSH
- mozkový neurotrofický faktor MeSH
- protein vázající cAMP responzivní element MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
- purinergní receptory P1 MeSH
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered.
- Klíčová slova
- episodic memory, memory consolidation, sleep, social recognition, spatial context,
- Publikační typ
- časopisecké články MeSH
In an attempt to compare effects of different neurotrophic factors on impaired memory function, young adult naive rats were trained to find the hidden platform in the Morris water maze (3 consecutive days, eight trials/day). The fimbria-fornix was unilaterally removed by aspiration and nerve growth factor (NGF) (11 micrograms/ml and 0.5 microgram/ml; groups NGF and ngf, respectively) or basic fibroblast growth factor (bFGF) (0.2 microgram/ml, group FGF) were applied via intra-cerebroventricular infusion by the osmotic minipump (flow rate 0.5 microliter/h, 14 days). Nootropic drug Cerebrolysin (EBEWE Arzneitmittel; 2.5 ml/kg/day, group CER) was applied via intraperitoneal injection (14 days). One group was formed by the rats treated with NGF (11 micrograms/ml) and Cerebrolysin (group NGFCER). Non-lesioned and lesioned only rats served as controls (groups INT and LES). After a 14-day treatment, rats were tested using the retention test (1 day, four trials). On the next day, the rats were tested using transfer test (3 days, eight trials/day). Escape latency and length of trajectory was recorded. Groups NGF, ngf, FGF and LES were similarly impaired in their ability to retrieve the old position of the platform (retention test), as well as in their ability to navigate to the new position of the platform (transfer test). In the latter, NGF group significantly differed from lesioned animals. Groups CER and NGFCER were comparable to group INT in the retention or transfer test. It is concluded that anterograde amnesia elicited by fimbria-fornix lesion can be abbreviated by NGF and/or CER, while retrograde amnesia is absent only in rats treated by CER. No short-term influence of bFGF was found. It is suggested that biochemical systems other than the cholinergic one are involved.
- MeSH
- aminokyseliny farmakologie MeSH
- bludiště - učení účinky léků MeSH
- fibroblastový růstový faktor 2 farmakologie MeSH
- hipokampus cytologie fyziologie MeSH
- krysa rodu Rattus MeSH
- neurotrofní faktory farmakologie MeSH
- nootropní látky farmakologie MeSH
- parasympatický nervový systém cytologie účinky léků MeSH
- poruchy paměti farmakoterapie psychologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- cerebrolysin MeSH Prohlížeč
- fibroblastový růstový faktor 2 MeSH
- neurotrofní faktory MeSH
- nootropní látky MeSH
Chondroitin sulfate proteoglycans (CSPGs) are the main active component of perineuronal nets (PNNs). Digestion of the glycosaminoglycan chains of CSPGs with chondroitinase ABC or transgenic attenuation of PNNs leads to prolongation of object recognition memory and activation of various forms of plasticity in the adult central nervous system. The inhibitory properties of the CSPGs depend on the pattern of sulfation of their glycosaminoglycans, with chondroitin 4-sulfate (C4S) being the most inhibitory form. In this study, we tested a number of candidates for functional blocking of C4S, leading to selection of an antibody, Cat316, which specifically recognizes C4S and blocks its inhibitory effects on axon growth. It also partly blocks binding of semaphorin 3A to PNNs and attenuates PNN formation. We asked whether injection of Cat316 into the perirhinal cortex would have the same effects on memory as chondroitinase ABC treatment. We found that masking C4S with the Cat316 antibody extended long-term object recognition memory in normal wild-type mice to 24 hours, similarly to chondroitinase or transgenic PNN attenuation. We then tested Cat316 for restoration of memory in a neurodegeneration model. Mice expressing tau with the P301S mutation showed profound loss of object recognition memory at 4 months of age. Injection of Cat316 into the perirhinal cortex normalized object recognition at 3 hours in P301S mice. These data indicate that Cat316 binding to C4S in the extracellular matrix can restore plasticity and memory in the same way as chondroitinase ABC digestion. Our results suggest that antibodies to C4S could be a useful therapeutic to restore memory function in neurodegenerative disorders.
- Klíčová slova
- Alzheimer's disease, CSPGs, Object recognition memory, Perineuronal nets, Plasticity,
- MeSH
- Alzheimerova nemoc farmakoterapie etiologie patofyziologie psychologie MeSH
- antigeny imunologie metabolismus fyziologie MeSH
- cílená molekulární terapie MeSH
- extracelulární matrix metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- neurodegenerativní nemoci farmakoterapie etiologie patofyziologie psychologie MeSH
- neuroplasticita MeSH
- neutralizující protilátky terapeutické užití MeSH
- paměť fyziologie MeSH
- potkani Sprague-Dawley MeSH
- proteoglykany imunologie metabolismus fyziologie MeSH
- protilátky aplikace a dávkování MeSH
- reakční čas MeSH
- tauopatie komplikace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- Cat316 antibody MeSH Prohlížeč
- chondroitin sulfate proteoglycan 4 MeSH Prohlížeč
- neutralizující protilátky MeSH
- proteoglykany MeSH
- protilátky MeSH
Insulin-like growth factors 2 and 1 (IGF2 and IGF1) and insulin are closely related hormones that are responsible for the regulation of metabolic homeostasis, development and growth of the organism. Physiological functions of insulin and IGF1 are relatively well-studied, but information about the role of IGF2 in the body is still sparse. Recent discoveries called attention to emerging functions of IGF2 in the brain, where it could be involved in processes of learning and memory consolidation. It was also proposed that these functions could be mediated by the receptor for IGF2 (IGF2R). Nevertheless, little is known about the mechanism of signal transduction through this receptor. Here we produced His-tagged domain 11 (D11), an IGF2-binding element of IGF2R; we immobilized it on the solid support through a well-defined sandwich, consisting of neutravidin, biotin and synthetic anti-His-tag antibodies. Next, we prepared specifically radiolabeled [125I]-monoiodotyrosyl-Tyr2-IGF2 and optimized a sensitive and robust competitive radioligand binding assay for determination of the nanomolar binding affinities of hormones for D11 of IGF2. The assay will be helpful for the characterization of new IGF2 mutants to study the functions of IGF2R and the development of new compounds for the treatment of neurological disorders.
- MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- insulinu podobný růstový faktor II metabolismus MeSH
- kompetitivní vazba MeSH
- kultivované buňky MeSH
- lidé MeSH
- radioizotopy jodu MeSH
- radioligandová zkouška metody MeSH
- receptor IGF typ 2 imunologie ultrastruktura MeSH
- signální transdukce MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IGF1 protein, human MeSH Prohlížeč
- IGF2 protein, human MeSH Prohlížeč
- IGF2R protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- insulinu podobný růstový faktor II MeSH
- Iodine-125 MeSH Prohlížeč
- radioizotopy jodu MeSH
- receptor IGF typ 2 MeSH
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
- MeSH
- chondroitinsulfát proteoglykany * metabolismus MeSH
- dendrity metabolismus MeSH
- extracelulární matrix * metabolismus MeSH
- neurony metabolismus MeSH
- neuroplasticita fyziologie MeSH
- synapse metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chondroitinsulfát proteoglykany * MeSH