mode of inheritance Dotaz Zobrazit nápovědu
Neither the genetic basis nor the inheritance of apomixis is fully understood in plants. The present study is focused on the inheritance of parthenogenesis, one of the basic elements of apomixis, in Pilosella (Asteraceae). A complex pattern of inheritance was recorded in the segregating F(1) progeny recovered from reciprocal crosses between the facultatively apomictic hexaploid P. rubra and the sexual tetraploid P. officinarum. Although both female and male reduced gametes of P. rubra transmitted parthenogenesis at the same rate in the reciprocal crosses, the resulting segregating F(1) progeny inherited parthenogenesis at different rates. The actual transmission rates of parthenogenesis were significantly correlated with the mode of origin of the respective F(1) progeny class. The inheritance of parthenogenesis was significantly reduced in F(1) n + n hybrid progeny from the cross where parthenogenesis was transmitted by female gametes. In F(1) n + 0 polyhaploid progeny from the same cross, however, the transmission rate of parthenogenesis was high; all fertile polyhaploids were parthenogenetic. It appeared that reduced female gametes transmitting parthenogenesis preferentially developed parthenogenetically and only rarely were fertilized in P. rubra. The fact that the determinant for parthenogenesis acts gametophytically in Pilosella and the precocious embryogenesis in parthenogenesis-transmitting megagametophytes was suggested as the most probable explanations for this observation. Furthermore, we observed the different expression of complete apomixis in the non-segregating F(1) 2n + n hybrids as compared to their apomictic maternal parent P. rubra. We suggest that this difference is a result of unspecified interactions between the parental genomes.
- MeSH
- apomixie genetika fyziologie MeSH
- Asteraceae genetika fyziologie MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný genetika MeSH
- hybridizace genetická MeSH
- partenogeneze genetika fyziologie MeSH
- polyploidie MeSH
- průtoková cytometrie MeSH
- rozmnožování MeSH
- typy dědičnosti MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Commercial Cydia pomonella granulovirus (CpGV) products have been successfully applied to control codling moth (CM) in organic and integrated fruit production for more than 30 years. Since 2005, resistance against the widely used isolate CpGV-M has been reported from different countries in Europe. The inheritance of this so-called type I resistance is dominant and linked to the Z chromosome. Recently, a second form (type II) of CpGV resistance in CM was reported from a field population (NRW-WE) in Germany. Type II resistance confers reduced susceptibility not only to CpGV-M but to most known CpGV isolates and it does not follow the previously described Z-linked inheritance of type I resistance. To further analyze type II resistance, two CM strains, termed CpR5M and CpR5S, were generated from parental NRW-WE by repeated mass crosses and selection using the two isolates CpGV-M and CpGV-S, respectively. Both CpR5M and CpR5S were considered to be genetically homogeneous for the presence of the resistance allele(s). By crossing and backcrossing experiments with a susceptible CM strain, followed by resistance testing of the offspring, an autosomal dominant inheritance of resistance was elucidated. In addition, cross-resistance to CpGV-M and CpGV-S was detected in both strains, CpR5M and CpR5S. To test the hypothesis that the autosomal inheritance of type II resistance was caused by a large interchromosomal rearrangement involving the Z chromosome, making type I resistance appear to be autosomal in these strains; fluorescence in situ hybridization with bacterial artificial chromosome probes (BAC-FISH) was used to physically map the Z chromosomes of different CM strains. Conserved synteny of the Z-linked genes in CpR5M and other CM strains rejects this hypothesis and argues for a novel genetic and functional mode of resistance in CM populations with type II resistance.
- MeSH
- Betabaculovirus genetika fyziologie MeSH
- chromozomy hmyzu genetika MeSH
- genom virový genetika MeSH
- hybridizace genetická MeSH
- můry genetika fyziologie virologie MeSH
- typy dědičnosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Musca domestica Linnaeus (house fly, Diptera: Muscidae) is a major veterinary and medical important pest all over the world. These flies have ability to develop resistance to insecticides. The present trial was performed to discover the inheritance mode (autosomal, dominance, number of genes involved) and preliminary mechanism of methoxyfenozide resistance in order to provide basic information necessary to develop resistance management strategy for this pest. A strain of M. domestica (MXY-SEL) was exposed to methoxyfenozide for 44 generations which developed a 5253.90-fold level of resistance to methoxyfenozide. The overlapping fiducial limits of LC50 values of the reciprocal crosses, F1 (MXY-SEL ♂ × Susceptible ♀) and F1† (MXY-SEL ♀ × Susceptible ♂), suggest that inheritance of methoxyfenozide resistance was an autosomal and likely completely dominant trait (DLC = 0.93 and 0.94 for F1 and F1†, respectively). Backcrosses of the F1 with the parental MXY-SEL or Susceptible population predict a polygenic mode of inheritance. Piperonyl butoxide significantly altered the LC50 values, suggesting enhanced detoxification by cytochrome P450-dependent monooxygenases is a major mechanism of resistance to methoxyfenozide in the MXY-SEL strain. The estimated realized heritability was 0.07 for methoxyfenozide. These results would be helpful for the better management of M. domestica.
- Klíčová slova
- Inheritance pattern, autosomal, realized heritability,
- MeSH
- hmyzí geny MeSH
- hydraziny * MeSH
- inhibitory enzymů MeSH
- insekticidy * MeSH
- juvenilní hormony * MeSH
- křížení genetické MeSH
- moucha domácí genetika MeSH
- multifaktoriální dědičnost MeSH
- rezistence k insekticidům genetika MeSH
- selekce (genetika) MeSH
- systém (enzymů) cytochromů P-450 genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydraziny * MeSH
- inhibitory enzymů MeSH
- insekticidy * MeSH
- juvenilní hormony * MeSH
- methoxyfenozide MeSH Prohlížeč
- systém (enzymů) cytochromů P-450 MeSH
Protein folding is an extremely complicated process, which has been extensively tackled during the last decades. In vivo, a certain molecular machinery is responsible for assisting the correct folding of proteins and maintaining protein homeostasis: the members of this machinery are the heat shock proteins (HSPs), which belong among molecular chaperones. Mutations in HSPs are associated with several inherited diseases, and members of this group were also proved to be involved in neurodegenerative pathologies (e.g., Alzheimer and Parkinson diseases), cancer, viral infections, and antibiotic resistance of bacteria. Therefore, it is critical to understand the principles of HSP functioning and their exact role in human physiology and pathology. This review attempts to briefly describe the main chaperone families and the interplay between individual chaperones, as well as their general and specific functions in the context of cell physiology and human diseases.
- Klíčová slova
- HSP, aggregation, cancer, chaperone, neurodegenerative disease, protein folding,
- MeSH
- lidé MeSH
- neurodegenerativní nemoci metabolismus genetika MeSH
- proteiny teplotního šoku * metabolismus genetika MeSH
- sbalování proteinů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny teplotního šoku * MeSH
Metabolomics has become an important tool in clinical research and diagnosis of human diseases. In this work we focused on the diagnosis of inherited metabolic disorders (IMDs) in plasma samples using a targeted metabolomic approach. The plasma samples were analyzed with the flow injection analysis method. All the experiments were performed on a QTRAP 5500 tandem mass spectrometer (AB SCIEX, U.S.A.) with electrospray ionization. The compounds were measured in a multiple reaction monitoring mode. We analyzed 50 control samples and 34 samples with defects in amino acid metabolism (phenylketonuria, maple syrup urine disease, tyrosinemia I, argininemia, homocystinuria, carbamoyl phosphate synthetase deficiency, ornithine transcarbamylase deficiency, nonketotic hyperglycinemia), organic acidurias (methylmalonic aciduria, propionic aciduria, glutaric aciduria I, 3-hydroxy-3-methylglutaric aciduria, isovaleric aciduria), and mitochondrial defects (medium-chain acyl-coenzyme A dehydrogenase deficiency, carnitine palmitoyltransferase II deficiency). The controls were distinguished from the patient samples by principal component analysis and hierarchical clustering. Approximately 80% of patients were clearly detected by absolute metabolite concentrations, the sum of variance for first two principle components was in the range of 44-55%. Other patient samples were assigned due to the characteristic ratio of metabolites (the sum of variance for first two principle components 77 and 83%). This study has revealed that targeted metabolomic tools with automated and unsupervised processing can be applied for the diagnosis of various IMDs.
- MeSH
- analýza hlavních komponent MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- metabolom MeSH
- metabolomika metody MeSH
- mladiství MeSH
- předškolní dítě MeSH
- průtoková injekční analýza MeSH
- reprodukovatelnost výsledků MeSH
- shluková analýza MeSH
- tandemová hmotnostní spektrometrie MeSH
- vrozené poruchy metabolismu aminokyselin krev diagnóza MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites, which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1× log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (P = 0.003)-being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.
- Klíčová slova
- KMT2B, age at onset, dystonia, episignature, mode of inheritance,
- MeSH
- biologické markery MeSH
- dystonické poruchy * genetika terapie MeSH
- dystonie * genetika terapie MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- histonlysin-N-methyltransferasa MeSH
- KMT2B protein, human MeSH Prohlížeč
Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.
- Klíčová slova
- B chromosome, Chromosome elimination, Germline-restricted chromosome, Germline/soma genome difference, Non-Mendelian inheritance,
- MeSH
- chromozomy genetika MeSH
- DNA MeSH
- fylogeneze MeSH
- sny MeSH
- zárodečné buňky MeSH
- zpěvní ptáci * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
Recent studies of the distribution and diversity of freshwater zooplankton have indicated that the previously understudied Eastern Palearctic region is an important biogeographic hotspot. Here, we explored the lineage diversity and reproductive modes of the Daphnia pulex species group across China. Members of this group are often keystone species of standing water bodies and are frequently used as a model system for ecological, evolutionary and, more recently, genomic studies. We found members of the D. pulex group in seven of seventy-six Chinese water bodies examined. We analyzed their phylogenetic position using mitochondrial markers, and explored the genetic structure of six populations using microsatellite markers. Mitochondrial DNA analysis suggested the presence of two distinct species complexes in China: the D. pulex complex that has a global distribution, and an apparently endemic Eastern Palearctic D. mitsukuri complex. Microsatellite analyses of six populations suggested that three of these reproduced by cyclical parthenogenesis, as evidenced by high clonal diversity and the absence of deviations from the Hardy-Weinberg equilibrium. In contrast, three other populations showed remarkably low diversity of multilocus genotypes. This suggests an obligate parthenogenetic reproductive mode, which was confirmed in one of the populations by comparison of genotypes of Daphnia adults and dormant embryos. All presumably obligate parthenogenetic clones were heterozygous at the majority of microsatellite loci, suggesting their hybrid origin. This was further supported by analyses of a small GTPase nuclear gene (rab4), as two alleles within single individuals belonged to different clades. Interestingly, one putatively obligate parthenogenetic clone carried three distinct alleles suggesting higher ploidy and potential gene flow between the D. pulicaria and D. mitsukuri complexes. Our data show that the expansion of the D. pulex complex in the Eastern Palearctic was associated with widespread hybridization.
- Klíčová slova
- Eastern Palearctic, Heterozygosity, Microsatellites, Mitochondrial DNA, Obligate parthenogenesis, Rab4,
- MeSH
- analýza hlavních komponent MeSH
- Daphnia klasifikace genetika MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- haplotypy MeSH
- jezera * MeSH
- mikrosatelitní repetice genetika MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální geny MeSH
- pravděpodobnostní funkce MeSH
- rozmnožování genetika MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Čína MeSH
- Názvy látek
- mitochondriální DNA MeSH
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited disease of the heart muscle whose main characteristic is unexplained hypertrophy of the left ventricle and/or right ventricle. It is considered to be the most common genetically determined cardiovascular disease with the prevalence in the population approximately 1 to 500 inhabitants. The disease is associated with severe complications such as heart failure, arrhythmias and sudden cardiac death (SCD). Nowadays the aim of intensive clinical research is to judge the contribution of noninvasive methods in the risk stratification of HCM patients. Abnormal electrocardiogram occurs in 75-95% and it often presents the first point for HCM suspicion although it is nonspecific. AIM: The aim of our study was to evaluate the electrocardiographic (standard 12-lead) and certain echocardiographic markers in patients with recurrent syncope of unknown origin in comparison with patients without these episodes. PATIENTS AND METHODS: 42 patients (17 men a 25 women) with verified HCM diagnosis underwent extensive clinical, standard 12-lead electrocardiographic and echocardiographic testing to compare these parameters in the subgroup of patients with syncope (n = 17) of unknown origin and patients without syncope (n = 23). RESULTS: As for the electrocardiographic signs we found that more than one half of patients had positive Sokolow-Lyon index (55.6%), prolonged QTc interval (63.2%). Depression of ST segment was present in 60.5%. We also found positive correlation between prolonged QTc interval and maximal left ventricle thickness. We observed that patients with syncope had statistically significantly left ventricle end-diasotlic diameter in comparison with patients without syncope. CONCLUSION: Standard electrocardiography represents a "gold standard" in the diagnostics of HCM patients. We found positive correlation between prolonged QTc interval and maximal left ventricle thickness. Patients with syncope had statistically significantly smaller left ventricle end-diastolic diameter in comparison with patients without syncope.
The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis.
- MeSH
- apomixie genetika MeSH
- Asteraceae genetika MeSH
- biologická evoluce * MeSH
- DNA chloroplastová genetika MeSH
- DNA rostlinná genetika MeSH
- genetické lokusy * MeSH
- genetické markery MeSH
- haplotypy MeSH
- konzervovaná sekvence MeSH
- molekulární sekvence - údaje MeSH
- populační genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny * MeSH
- semena rostlinná genetika MeSH
- typy dědičnosti MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová MeSH
- DNA rostlinná MeSH
- genetické markery MeSH