structural cortical networks Dotaz Zobrazit nápovědu
BACKGROUND: Structural cortical networks (SCNs) represent patterns of coordinated morphological modifications in cortical areas, and they present the advantage of being extracted from previously acquired clinical magnetic resonance imaging (MRI) scans. SCNs have shown pathophysiological changes in many brain disorders, including multiple sclerosis. OBJECTIVE: To investigate alterations of SCNs at the individual level in patients with clinically isolated syndrome (CIS), thereby assessing their clinical relevance. METHODS: We analyzed baseline data collected in a prospective multicenter (MAGNIMS) study. CIS patients (n = 60) and healthy controls (n = 38) underwent high-resolution 3T MRI. Measures of disability and cognitive processing were obtained for patients. Single-subject SCNs were extracted from brain 3D-T1 weighted sequences; global and local network parameters were computed. RESULTS: Compared to healthy controls, CIS patients showed altered small-world topology, an efficient network organization combining dense local clustering with relatively few long-distance connections. These disruptions were worse for patients with higher lesion load and worse cognitive processing speed. Alterations of centrality measures and clustering of connections were observed in specific cortical areas in CIS patients when compared with healthy controls. CONCLUSION: Our study indicates that SCNs can be used to demonstrate clinically relevant alterations of connectivity in CIS.
- Klíčová slova
- Magnetic resonance imaging, clinically isolated syndrome, graph theory, gray matter, multicenter study, multiple sclerosis, structural cortical networks,
- MeSH
- demyelinizační nemoci * diagnostické zobrazování MeSH
- kognice MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování MeSH
- nervové dráhy diagnostické zobrazování MeSH
- prospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Despite substantial clinical and pathophysiological differences, the characteristics of tremor in Parkinson's disease (PD) and essential tremor (ET) patients bear certain similarities. The presented study delineates tremor-related structural networks in these two disorders. METHODS: 42 non-advanced PD patients (18 tremor-dominant, 24 without substantial tremor), 17 ET, and 45 healthy controls underwent high-angular resolution diffusion-weighted imaging acquisition to reconstruct their structural motor connectomes as a proxy of the anatomical interconnections between motor network regions, implementing state-of-the-art globally optimised probabilistic tractography. RESULTS: When compared to healthy controls, ET patients exhibited higher structural connectivity in the cerebello-thalamo-cortical network. Interestingly, the comparison of tremor-dominant PD patients and PD patients without tremor yielded very similar results - higher structural connectivity in tremor-dominant PD sharing multiple nodes with the tremor network detected in ET, despite the generally lower structural connectivity between basal ganglia and frontal cortex in the whole PD group when compared to healthy controls. CONCLUSION: The higher structural connectivity of the cerebello-thalamo-cortical network seems to be the dominant tremor driver in both PD and ET. While it appears to be the only tremor-related network in ET, its combination with large scale hypoconnectivity in the frontal cortico-subcortical network in PD may explain different clinical features of tremor in these two disorders.
- Klíčová slova
- Essential tremor, Parkinson's disease, Probabilistic tractography, Structural connectome, Tremor,
- MeSH
- esenciální tremor * diagnostické zobrazování MeSH
- konektom * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- Parkinsonova nemoc * komplikace diagnostické zobrazování MeSH
- tremor MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.
- MeSH
- emoce MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek MeSH
- posttraumatická stresová porucha * psychologie MeSH
- prefrontální mozková kůra MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Sex differences permeate many aspects of dementia with Lewy bodies (DLB), including epidemiology, pathogenesis, disease progression, and symptom manifestation. However, less is known about potential sex differences in patterns of neurodegeneration in DLB. Here, we test whether grey matter networks also differ between female and male DLB patients. To assess the specificity of these sex differences to DLB, we additionally investigate sex differences in healthy controls (HCs). METHODS: A total of 119 (68.7 ± 8.4 years) male and 45 female (69.9 ± 9.1 years) DLB patients from three European centres and the Mayo Clinic were included in this study. Additionally, we included 119 male and 45 female age-matched HCs from the Mayo Clinic. Grey matter volumes of 58 cortical, subcortical, cerebellar, and pontine brain regions derived from structural magnetic resonance images were corrected for age, intracranial volume, and centre. Sex-specific grey matter networks for DLB patients and HCs were constructed by correlating each pair of brain regions. Network properties of the correlation matrices were compared between sexes and groups. Additional analyses were conducted on W-scored data to identify DLB-specific findings. RESULTS: Networks of male HCs and male DLB patients were characterised by a lower nodal strength compared to their respective female counterparts. In comparison to female HCs, the grey matter networks of male HCs showed a higher global efficiency, modularity, and a lower number of modules. None of the global and nodal network measures showed significant sex differences in DLB. CONCLUSIONS: The disappearance of sex differences in the structural grey matter networks of DLB patients compared to HCs may indicate a sex-dependent network vulnerability to the alpha-synuclein pathology in DLB. Future studies might investigate whether the differences in structural network measures are associated with differences in cognitive scores and clinical symptoms between the sexes.
- Klíčová slova
- dementia with Lewy bodies, grey matter networks, sex differences,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
- MeSH
- dospělí MeSH
- konektom * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek patologie patofyziologie MeSH
- mozková kůra patologie patofyziologie MeSH
- nervová síť patologie patofyziologie diagnostické zobrazování MeSH
- nervové dráhy patofyziologie patologie MeSH
- schizofrenie * patologie patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
- Klíčová slova
- Schizophrenia, asymmetry, brain imaging, cortical, subcortical,
- MeSH
- funkční lateralita MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování MeSH
- mozková kůra MeSH
- schizofrenie * diagnostické zobrazování MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The aim was to describe the contribution of basal ganglia (BG) thalamo-cortical circuitry to the whole-brain functional connectivity in focal epilepsies. METHODS: Interictal resting-state fMRI recordings were acquired in 46 persons with focal epilepsies. Of these 46, 22 had temporal lobe epilepsy: 9 left temporal (LTLE), 13 right temporal (RTLE); 15 had frontal lobe epilepsy (FLE); and 9 had parietal/occipital lobe epilepsy (POLE). There were 20 healthy controls. The complete weighted network was analyzed based on correlation matrices of 90 and 194 regions. The network topology was quantified on a global and regional level by measures based on graph theory, and connection-level changes were analyzed by the partial least square method. RESULTS: In all patient groups except RTLE, the shift of the functional network topology away from random was observed (normalized clustering coefficient and characteristic path length were higher in patient groups than in controls). Links contributing to this change were found in the cortico-subcortical connections. Weak connections (low correlations) consistently contributed to this modification of the network. The importance of regions changed: decreases in the subcortical areas and both decreases and increases in the cortical areas were observed in node strength, clustering coefficient and eigenvector centrality in patient groups when compared to controls. Node strength decreases of the basal ganglia, i.e. the putamen, caudate, and pallidum, were displayed in LTLE, FLE, and POLE. The connectivity within the basal ganglia-thalamus circuitry was not disturbed; the disturbance concerned the connectivity between the circuitry and the cortex. SIGNIFICANCE: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.
- Klíčová slova
- Epilepsy, Functional connectivity, Functional magnetic resonance imaging, Network analysis, Partial least square analysis,
- MeSH
- bazální ganglia diagnostické zobrazování patofyziologie MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- epilepsie parciální diagnostické zobrazování patofyziologie MeSH
- kyslík krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku * MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování MeSH
- nervová síť diagnostické zobrazování MeSH
- nervové dráhy diagnostické zobrazování patofyziologie MeSH
- počítačové zpracování obrazu MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH
OBJECTIVE: The aim of this work was to study the oscillatory changes during target and distractor stimuli processing. We focused mainly on responses after distractor stimuli in the prefrontal cortex and their possible relation to our previous results from the basal ganglia. METHODS: Five epilepsy surgery candidates with implanted depth electrodes performed a three-stimulus paradigm. The frequent stimulus (70%; without required response) was a small blue circle, the target stimulus (15%; with motor response) was a larger blue circle, and the distractor stimulus (15%; without required response) was a checkerboard. The SEEG signals from 404 electrode contacts were analysed using event-related de/synchronization (ERD/S) methodology. RESULTS: The main response to the target stimuli was ERD in the alpha and low beta bands, predominantly in the motor control areas, parietal cortex and hippocampus. The distractor stimuli were generally accompanied by an early theta frequency band power increase most markedly in the prefrontal cortex. CONCLUSIONS: Different ERD/S patterns underline attentional shifting to rare target ("go") and distractor ("no-go") stimuli. SIGNIFICANCE: As an increase in lower frequency band power is considered to be a correlate of active inhibition, the prefrontal structures seem to be essential for inhibition of non-required movements.
- MeSH
- alfa rytmus EEG fyziologie MeSH
- beta rytmus EEG fyziologie MeSH
- biologické hodiny fyziologie MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- epilepsie patofyziologie MeSH
- evokované potenciály fyziologie MeSH
- kognice fyziologie MeSH
- korová synchronizace fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- modely neurologické * MeSH
- prefrontální mozková kůra fyziologie MeSH
- psychomotorický výkon fyziologie MeSH
- světelná stimulace metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
OBJECTIVE: The clinical diversity of schizophrenia is reflected by structural brain variability. It remains unclear how this variability manifests across different gray and white matter features. In this meta- and mega-analysis, the authors investigated how brain heterogeneity in schizophrenia is distributed across multimodal structural indicators. METHODS: The authors used the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6,037 individuals for a given brain measure. Variability and mean values of cortical thickness, cortical surface area, cortical folding index, subcortical volume, and fractional anisotropy were examined in individuals with schizophrenia and healthy control subjects. RESULTS: Individuals with schizophrenia showed greater variability in cortical thickness, cortical surface area, subcortical volume, and fractional anisotropy within the frontotemporal and subcortical network. This increased structural variability was mainly associated with psychopathological symptom domains, and the schizophrenia group frequently displayed lower mean values in the respective structural measures. Unexpectedly, folding patterns were more uniform in individuals with schizophrenia, particularly in the right caudal anterior cingulate region. The mean folding values of the right caudal anterior cingulate region did not differ between the schizophrenia and healthy control groups, and folding patterns in this region were not associated with disease-related parameters. CONCLUSIONS: In patients with schizophrenia, uniform folding patterns in the right caudal anterior cingulate region contrasted with the multimodal variability in the frontotemporal and subcortical network. While variability in the frontotemporal and subcortical network was associated with disease-related diversity, uniform folding may indicate a less flexible interplay between genetic and environmental factors during neurodevelopment.
- Klíčová slova
- Neuroimaging, Neuroscience, Schizophrenia Spectrum and Other Psychotic Disorders,
- MeSH
- anizotropie MeSH
- bílá hmota diagnostické zobrazování patologie MeSH
- cingulární gyrus patologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek * diagnostické zobrazování patologie MeSH
- mozková kůra diagnostické zobrazování patologie MeSH
- schizofrenie * patologie diagnostické zobrazování patofyziologie MeSH
- šedá hmota patologie diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
BACKGROUND: Prenatal stress influences brain development and mood disorder vulnerability. Brain structural covariance network (SCN) properties based on inter-regional volumetric correlations may reflect developmentally-mediated shared plasticity among regions. Childhood trauma is associated with amygdala-centric SCN reorganization patterns, however, the impact of prenatal stress on SCN properties remains unknown. METHODS: The study included participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) with archival prenatal stress data and structural MRI acquired in young adulthood (age 23-24). SCNs were constructed based on Freesurfer-extracted volumes of 7 subcortical and 34 cortical regions. We compared amygdala degree centrality, a measure of hubness, between those exposed to high vs. low (median split) prenatal stress, defined by maternal reports of stressful life events during the first (n = 93, 57% female) and second (n = 125, 54% female) half of pregnancy. Group differences were tested across network density thresholds (5-40%) using 10,000 permutations, with sex and intracranial volume as covariates, followed by sex-specific analyses. Finally, we sought to replicate our results in an independent all-male sample (n = 450, age 18-20) from the Avon Longitudinal Study of Parents and Children (ALSPAC). RESULTS: The high-stress during the first half of pregnancy ELSPAC group showed lower amygdala degree particularly in men, who demonstrated this difference at 10 consecutive thresholds, with no significant differences in global network properties. At the lowest significant density threshold, amygdala volume was positively correlated with hippocampus, putamen, rostral anterior and posterior cingulate, transverse temporal, and pericalcarine cortex in the low-stress (p(FDR) < 0.027), but not the high-stress (p(FDR) > 0.882) group. Although amygdala degree was nominally lower across thresholds in the high-stress ALSPAC group, these results were not significant. CONCLUSION: Unlike childhood trauma, prenatal stress may shift SCN towards a less amygdala-centric SCN pattern, particularly in men. These findings did not replicate in an all-male ALSPAC sample, possibly due to the sample's younger age and lower prenatal stress exposure.
- Klíčová slova
- ALSPAC, Amygdala, Degree centrality, ELSPAC, Prenatal stress, Structural covariance,
- MeSH
- amygdala * diagnostické zobrazování MeSH
- dítě MeSH
- dospělí MeSH
- hipokampus MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH