Role of saccharides in immunoglobulin--Fc receptor interactions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
1387100
DOI
10.1007/bf02814584
Knihovny.cz E-zdroje
- MeSH
- diferenciační antigeny metabolismus MeSH
- glykopeptidy metabolismus MeSH
- imunoglobulin G chemie metabolismus MeSH
- kultivované buňky MeSH
- monosacharidy metabolismus MeSH
- myši inbrední A MeSH
- myši MeSH
- prasata MeSH
- receptory Fc metabolismus MeSH
- receptory IgG MeSH
- tvorba rozet MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diferenciační antigeny MeSH
- glykopeptidy MeSH
- imunoglobulin G MeSH
- monosacharidy MeSH
- receptory Fc MeSH
- receptory IgG MeSH
The rosettes formed by mouse peritoneal macrophages or DCH-5 cells and TNP-erythrocytes coated with anti-TNP antibodies of different isotypes were inhibited to various extent by monosaccharides. The most effective inhibitors were N-acetylglucosamine, glucosamine, mannose and N-acetylneuraminic acid in 1-5 mmol/L concentrations. Even more efficient were glycopeptides isolated from IgG molecules. The Fc receptors (FcRs) released from DCH-5 cells during cultivation and gradually separated by affinity chromatography on immobilized IgG reacted with aggregated IgG and inhibited the rosette formation. The FcRs eluted by monosaccharides influenced mainly the number of rosettes mediated by IgA and IgE while those eluted with a glycine-HCl buffer inhibited preferentially IgG rosettes. As shown by SDS-PAGE the heterogeneity of the fraction eluted with a mixture of monosaccharides revealed one main component with an effective molar mass of 50 kg/mol. The glycine-HCl eluate contained two major components of 55 and 38 kg/mol. The IgG-Sepharose 4B bound all the fractions but only the binding of the 50 kg/mol molecule could be inhibited by monosaccharides.
Zobrazit více v PubMed
Mol Immunol. 1985 Apr;22(4):407-15 PubMed
Mol Immunol. 1989 May;26(5):495-500 PubMed
Int Arch Allergy Appl Immunol. 1966;29(2):185-9 PubMed
J Reticuloendothel Soc. 1982 Dec;32(6):423-31 PubMed
Scand J Immunol. 1981 Nov;14(5):537-44 PubMed
Immunol Today. 1989 May;10(5):159-64 PubMed
Immunol Today. 1988 Jul-Aug;9(7-8):185-7 PubMed
Folia Microbiol (Praha). 1980;25(3):246-53 PubMed
Eur J Immunol. 1986 Aug;16(8):901-5 PubMed
Biochem Biophys Res Commun. 1987 Oct 29;148(2):883-9 PubMed
Immunobiology. 1986 Aug;172(1-2):81-91 PubMed
Proc Natl Acad Sci U S A. 1987 Feb;84(3):819-23 PubMed
J Immunol. 1985 Jun;134(6):3712-7 PubMed
J Mol Biol. 1973 Nov 15;80(4):575-99 PubMed
Immunology. 1989 Sep;68(1):126-32 PubMed
J Exp Med. 1989 Dec 1;170(6):1959-72 PubMed
Folia Microbiol (Praha). 1983;28(3):205-15 PubMed
Proc Soc Exp Biol Med. 1969 Nov;132(2):575-81 PubMed
Biochem Soc Symp. 1986;51:131-48 PubMed
Proc Natl Acad Sci U S A. 1983 Nov;80(21):6632-6 PubMed
J Immunol. 1973 Mar;110(3):840-7 PubMed
J Immunol Methods. 1989 May 12;119(2):231-9 PubMed
Biochem J. 1989 Apr 15;259(2):347-53 PubMed
Glycoconj J. 1989;6(1):57-66 PubMed
Immunochemistry. 1969 Jan;6(1):53-66 PubMed
J Exp Med. 1986 Dec 1;164(6):1862-75 PubMed
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2301-5 PubMed
Biochem Biophys Res Commun. 1988 Sep 15;155(2):720-5 PubMed