Superantigen types in Staphylococcus aureus isolated from patients with cystic fibrosis
Language English Country United States Media print
Document type Journal Article
PubMed
17455800
DOI
10.1007/bf02931628
Knihovny.cz E-resources
- MeSH
- Antigens, Bacterial analysis genetics MeSH
- Bacterial Proteins genetics MeSH
- Cystic Fibrosis complications microbiology MeSH
- Child MeSH
- DNA, Bacterial genetics MeSH
- Enterotoxins genetics MeSH
- Genotype MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Nasal Cavity microbiology MeSH
- Infant, Newborn MeSH
- Patients MeSH
- Child, Preschool MeSH
- Carrier State microbiology MeSH
- Sputum microbiology MeSH
- Staphylococcal Infections microbiology MeSH
- Staphylococcus aureus classification genetics immunology isolation & purification MeSH
- Superantigens analysis genetics MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antigens, Bacterial MeSH
- Bacterial Proteins MeSH
- DNA, Bacterial MeSH
- Enterotoxins MeSH
- Superantigens MeSH
The screening of 17 SAg genes of S. aureus isolated from the sputum of cystic fibrosis (CF) patients revealed that among 47 genetically different strains, 39 (83 %) carried SAg genes. Superantigens forming enterotoxin gene cluster were detected in 20 strains. The 2nd most common superantigen type was selk detected in 13 strains. In 9 strains, selk occurred together with the sea gene. Out of 74 strains recovered from nasal carriers, 56 (75 %) were found to carry SAg genes, 38 carried egc genes, while selk was detected in 5 strains. The predominant SAg types in both investigated S. aureus populations were egc and selk/sea, but selk gene frequency was significantly higher in the CF-derived strains.
See more in PubMed
J Immunol. 1995 Jun 15;154(12):6306-13 PubMed
Eur J Clin Microbiol Infect Dis. 2003 May;22(5):306-9 PubMed
J Infect Dis. 2000 Mar;181(3):984-9 PubMed
Annu Rev Microbiol. 2001;55:77-104 PubMed
Epidemiol Infect. 1994 Jun;112(3):489-500 PubMed
Clin Microbiol Rev. 2000 Jan;13(1):16-34, table of contents PubMed
J Clin Microbiol. 1998 Jun;36(6):1653-9 PubMed
FEMS Microbiol Lett. 2004 Apr 1;233(1):45-52 PubMed
Annu Rev Microbiol. 1994;48:585-617 PubMed
Clin Infect Dis. 1998 Aug;27 Suppl 1:S68-74 PubMed
FEMS Microbiol Lett. 2005 Feb 15;243(2):447-54 PubMed
J Immunol. 2001 Jan 1;166(1):669-77 PubMed
Science. 1990 May 11;248(4956):705-11 PubMed
Folia Microbiol (Praha). 2004;49(4):353-86 PubMed
J Clin Microbiol. 1999 Aug;37(8):2446-9 PubMed
J Lab Clin Med. 2000 Mar;135(3):225-30 PubMed
Emerg Infect Dis. 2003 Aug;9(8):978-84 PubMed
Int J Food Microbiol. 2006 Apr 15;108(1):36-41 PubMed
Clin Microbiol Rev. 1997 Jul;10(3):505-20 PubMed
Clin Exp Immunol. 2003 Sep;133(3):299-306 PubMed
Infect Immun. 2002 Feb;70(2):620-30 PubMed
Acta Microbiol Pol. 2001;50(3-4):251-61 PubMed
J Clin Microbiol. 1999 Oct;37(10):3411-4 PubMed
Plasmid. 2003 Mar;49(2):93-105 PubMed
Appl Environ Microbiol. 2000 Apr;66(4):1347-53 PubMed
N Engl J Med. 2001 Jan 4;344(1):11-6 PubMed
Clin Microbiol Rev. 2002 Apr;15(2):194-222 PubMed
Infect Immun. 2001 Jan;69(1):360-6 PubMed
J Infect Dis. 1997 Aug;176(2):431-8 PubMed
J Appl Microbiol. 2003;95(1):38-43 PubMed
Screening of Staphylococcus aureus nasal strains isolated from medical students for toxin genes
Characteristics of Staphylococcus aureus isolated from rabbits