• This record comes from PubMed

Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense

. 2009 Nov 20 ; 284 (47) : 32572-81. [epub] 20090928

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
55005623 Howard Hughes Medical Institute - United States

Links

PubMed 19801643
PubMed Central PMC2781671
DOI 10.1074/jbc.m109.022871
PII: S0021-9258(20)37848-0
Knihovny.cz E-resources

Enzymes scavenging reactive oxygen species (ROS) are important for cell protection during stress and aging. A deficiency in these enzymes leads to ROS imbalance, causing various disorders in many organisms, including yeast. In contrast to liquid cultures, where fitness of the yeast population depends on its ROS scavenging capability, the present study suggests that Saccharomyces cerevisiae cells growing in colonies capable of ammonia signaling use a broader protective strategy. Instead of maintaining high levels of antioxidant enzymes for ROS detoxification, colonies activate an alternative metabolism that prevents ROS production. Colonies of the strain deficient in cytosolic superoxide dismutase Sod1p thus developed the same way as wild type colonies. They produced comparable levels of ammonia and underwent similar developmental changes (expression of genes of alternative metabolism and center margin differentiation in ROS production, cell death occurrence, and activities of stress defense enzymes) and did not accumulate stress-resistant suppressants. An absence of cytosolic catalase Ctt1p, however, brought colonies developmental problems, which were even more prominent in the absence of mitochondrial Sod2p. sod2Delta and ctt1Delta colonies failed in ammonia production and sufficient activation of the alternative metabolism and were incapable of center margin differentiation, but they did not increase ROS levels. These new data indicate that colony disorders are not accompanied by ROS burst but could be a consequence of metabolic defects, which, however, could be elicited by imbalance in ROS produced in early developmental phases. Sod2p and homeostasis of ROS may participate in regulatory events leading to ammonia signaling.

See more in PubMed

Eberhardt M. K. (2001) Reactive Oxygen Metabolites: Chemistry and Medical Consequences, pp. 303–365, CRC Press, Boca Raton, FL

Izawa S., Inoue Y., Kimura A. (1996) Biochem. J. 320, 61–67 PubMed PMC

Schüller C., Brewster J. L., Alexander M. R., Gustin M. C., Ruis H. (1994) EMBO J. 13, 4382–4389 PubMed PMC

Van Zandycke S. M., Sohier P. J., Smart K. A. (2002) Mech. Ageing Dev. 123, 365–373 PubMed

Guaragnella N., Antonacci L., Giannattasio S., Marra E., Passarella S. (2008) FEBS Lett. 582, 210–214 PubMed

Westerbeek-Marres C. A., Moore M. M., Autor A. P. (1988) Eur. J. Biochem. 174, 611–620 PubMed

Davidson J. F., Whyte B., Bissinger P. H., Schiestl R. H. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 5116–5121 PubMed PMC

Gralla E. B., Valentine J. S. (1991) J. Bacteriol. 173, 5918–5920 PubMed PMC

Longo V. D., Gralla E. B., Valentine J. S. (1996) J. Biol. Chem. 271, 12275–12280 PubMed

Strain J., Lorenz C. R., Bode J., Garland S., Smolen G. A., Ta D. T., Vickery L. E., Culotta V. C. (1998) J. Biol. Chem. 273, 31138–31144 PubMed

Lapinskas P. J., Cunningham K. W., Liu X. F., Fink G. R., Culotta V. C. (1995) Mol. Cell. Biol. 15, 1382–1388 PubMed PMC

Nadell C. D., Xavier J. B., Foster K. R. (2009) FEMS Microbiol. Rev. 33, 206–224 PubMed

Palková Z., Váchová L. (2006) FEMS Microbiol. Rev. 30, 806–824 PubMed

Palková Z., Janderová B., Gabriel J., Zikánová B., Pospísek M., Forstová J. (1997) Nature 390, 532–536 PubMed

Palková Z., Devaux F., Ricicova M., Mináriková L., Le Crom S., Jacq C. (2002) Mol. Biol. Cell 13, 3901–3914 PubMed PMC

Váchová L., Palková Z. (2005) J. Cell Biol. 169, 711–717 PubMed PMC

Váchová L., Devaux F., Kucerová H., Ricicová M., Jacq C., Palková Z. (2004) J. Biol. Chem. 279, 37973–37981 PubMed

Beauchamp C., Fridovich I. (1971) Anal. Biochem. 44, 276–287 PubMed

Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. (1984) Anal. Biochem. 140, 532–537 PubMed

Kim K., Kim I. H., Lee K. Y., Rhee S. G., Stadtman E. R. (1988) J. Biol. Chem. 263, 4704–4711 PubMed

Netto L. E., Chae H. Z., Kang S. W., Rhee S. G., Stadtman E. R. (1996) J. Biol. Chem. 271, 15315–15321 PubMed

Palková Z., Váchová L., Gásková D., Kucerová H. (2009) Mol. Membr. Biol. 26, 228–235 PubMed

Perrone G. G., Tan S. X., Dawes I. W. (2008) Biochim. Biophys. Acta 1783, 1354–1368 PubMed

Wawryn J., Krzepilko A., Myszka A., Bilinski T. (1999) Acta Biochim. Pol. 46, 249–253 PubMed

Bonatto D. (2007) Free Radic. Biol. Med. 43, 557–567 PubMed

O'Brien K. M., Dirmeier R., Engle M., Poyton R. O. (2004) J. Biol. Chem. 279, 51817–51827 PubMed

Bühler M., Gasser S. M. (2009) EMBO J. 28, 2149–2161 PubMed PMC

Váchová L., Kucerová H., Devaux F., Ulehlová M., Palková Z. (2009) Environ. Microbiol. 11, 494–504 PubMed

Fabrizio P., Battistella L., Vardavas R., Gattazzo C., Liou L. L., Diaspro A., Dossen J. W., Gralla E. B., Longo V. D. (2004) J. Cell Biol. 166, 1055–1067 PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

The characteristics of differentiated yeast subpopulations depend on their lifestyle and available nutrients

. 2024 Feb 14 ; 14 (1) : 3681. [epub] 20240214

The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies

. 2020 Jun 30 ; 117 (26) : 15123-15131. [epub] 20200615

Transcriptome Remodeling of Differentiated Cells during Chronological Ageing of Yeast Colonies: New Insights into Metabolic Differentiation

. 2018 ; 2018 () : 4932905. [epub] 20180111

Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling

. 2017 Oct 23 ; 18 (1) : 814. [epub] 20171023

Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality

. 2016 Apr ; 17 (2) : 395-408. [epub] 20151127

Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies

. 2016 Mar 29 ; 7 (13) : 15299-314.

Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies

. 2013 ; 2013 () : 102485. [epub] 20130721

Yeast colonies: a model for studies of aging, environmental adaptation, and longevity

. 2012 ; 2012 () : 601836. [epub] 20120813

Reactive oxygen species in the signaling and adaptation of multicellular microbial communities

. 2012 ; 2012 () : 976753. [epub] 20120701

General and molecular microbiology and microbial genetics in the IM CAS

. 2010 Dec ; 37 (12) : 1227-39. [epub] 20101118

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...