Live imaging of mitosomes and hydrogenosomes by HaloTag technology
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
Howard Hughes Medical Institute - United States
PubMed
22558433
PubMed Central
PMC3338651
DOI
10.1371/journal.pone.0036314
PII: PONE-D-12-02645
Knihovny.cz E-resources
- MeSH
- Anaerobiosis MeSH
- Genetic Vectors genetics MeSH
- Giardia lamblia cytology genetics MeSH
- Hydrolases genetics MeSH
- Ligands MeSH
- Mitochondria metabolism MeSH
- Molecular Imaging methods MeSH
- Organelles metabolism MeSH
- Protozoan Proteins genetics MeSH
- Recombinant Fusion Proteins genetics MeSH
- Genes, Reporter genetics MeSH
- Trichomonas vaginalis cytology genetics MeSH
- Cell Survival MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- haloalkane dehalogenase MeSH Browser
- Hydrolases MeSH
- Ligands MeSH
- Protozoan Proteins MeSH
- Recombinant Fusion Proteins MeSH
Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in these intriguing unicellular eukaryotes.
See more in PubMed
Hehl AB, Marti M. Secretory protein trafficking in Giardia intestinalis. Mol Microbiol. 2004;53:19–28. PubMed
Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, et al. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A. 2011;108:6151–6156. PubMed PMC
Poxleitner MK, Carpenter ML, Mancuso JJ, Wang C-JR, Dawson SC, et al. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science. 2008;319:1530–1533. PubMed
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. PubMed
Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol. 2010;8:413–422. PubMed
Elmendorf HG, Dawson SC, McCaffery JM. The cytoskeleton of Giardia lamblia. Int J Parasitol. 2003;33:3–28. PubMed
Konrad C, Spycher C, Hehl AB. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog. 2010;6:e1000835. PubMed PMC
Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature. 2008;456:750–754. PubMed
Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6:e17285. PubMed PMC
Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, et al. The Core Components of Organelle Biogenesis and Membrane Transport in the Hydrogenosomes of Trichomonas vaginalis. PLoS ONE. 2011;6:e24428. PubMed PMC
Simpson AGB. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol. 2003;53:1759–1777. PubMed
Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440:623–630. PubMed
Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdý I, et al. Frataxin, a conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2007;6:1431–1438. PubMed PMC
Mukherjee M, Brown MT, McArthur AG, Johnson PJ. Proteins of the glycine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2006;5:2062–2071. PubMed PMC
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41:1421–1434. PubMed PMC
Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell. 2009;8:916–919. PubMed PMC
Davis-Hayman SR, Nash TE. Genetic manipulation of Giardia lamblia. Mol Biochem Parasitol. 2002;122:1–7. PubMed
Gourguechon S, Cande WZ. Rapid tagging and integration of genes in Giardia intestinalis. Eukaryot Cell. 2011;10:142–145. PubMed PMC
Saraiya AA, Wang CC. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 2008;4:e1000224. PubMed PMC
Yu DC, Wang AL, Wu CH, Wang CC. Virus-mediated expression of firefly luciferase in the parasitic protozoan Giardia lamblia. Mol Cell Biol. 1995;15:4867–4872. PubMed PMC
Dawson SC, House SA. Imaging and analysis of the microtubule cytoskeleton in giardia. Methods Cell Biol. 2010;97:307–339. PubMed
Regoes A, Hehl A. SNAP-tag™ mediated live cell labeling as an alternative to GFP in anaerobic organisms. Biotechniques. 2005;39:809–812. PubMed
Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, et al. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem. 2008;283:35996–36010. PubMed PMC
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90:1103–1163. PubMed
Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. PubMed
Lloyd D, Harris JC, Maroulis S, Biagini GA, Wadley RB, et al. The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology. 2000;146 Pt 12:3109–3118. PubMed
Smutná T, Gonçalves VL, Saraiva LM, Tachezy J, Teixeira M, et al. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot Cell. 2009;8:47–55. PubMed PMC
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009;122:2846–2856. PubMed
House S a, Richter DJ, Pham JK, Dawson SC. Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog. 2011;7:e1002167. PubMed PMC
Wombacher R, Cornish VW. Chemical tags: Applications in live cell fluorescence imaging. J Biophotonics. 2011;4:391–402. PubMed
Gautier A, Juillerat A, Heinis C, Corrêa IR, Kindermann M, et al. An engineered protein tag for multiprotein labeling in living cells. Chem Biol. 2008;15:128–136. PubMed
Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A. 2004;101:9955–9959. PubMed PMC
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol. 2008;3:373–382. PubMed
Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, et al. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol. 2007;152:80–89. PubMed PMC
Yu DC, Wang AL, Wang CC. Stable coexpression of a drug-resistance gene and a heterologous gene in an ancient parasitic protozoan Giardia lamblia. Mol Biochem Parasitol. 1996;83:81–91. PubMed
Delgadillo MG, Liston DR, Niazi K, Johnson PJ. Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A. 1997;94:4716–4720. PubMed PMC
Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, et al. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 2009;26:1941–1947. PubMed PMC
Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, et al. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog. 2010;6:e1000812. PubMed PMC
Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004;432:618–622. PubMed
Shiflett AM, Johnson PJ. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol. 2010;64:409–429. PubMed PMC
Smith A, Johnson P. Gene expression in the unicellular eukaryote Trichomonas vaginalis. Res Microbiol. n.d.;162:646–654. PubMed
Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102:10924–10929. PubMed PMC
Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, et al. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol. 1996;83:221–234. PubMed
Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol. 2006;24:461–465. PubMed
Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods. 2008;5:545–551. PubMed PMC
Griffin BA, Adams SR, Tsien RY. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 1998;281:269–272. PubMed
Yamaguchi K, Inoue S, Ohara O, Nagase T. Pulse-chase experiment for the analysis of protein stability in cultured mammalian cells by covalent fluorescent labeling of fusion proteins. Methods Mol Biol. 2009;577:121–131. PubMed
Urh M, Hartzell D, Mendez J, Klaubert DH, Wood K. Methods for detection of protein-protein and protein-DNA interactions using HaloTag. Methods Mol Biol. 2008;421:191–209. PubMed
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–884. PubMed
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis
Mitochondrial dynamics in parasitic protists
Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging