• This record comes from PubMed

Live imaging of mitosomes and hydrogenosomes by HaloTag technology

. 2012 ; 7 (4) : e36314. [epub] 20120427

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Wellcome Trust - United Kingdom
Howard Hughes Medical Institute - United States

Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in these intriguing unicellular eukaryotes.

See more in PubMed

Hehl AB, Marti M. Secretory protein trafficking in Giardia intestinalis. Mol Microbiol. 2004;53:19–28. PubMed

Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, et al. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A. 2011;108:6151–6156. PubMed PMC

Poxleitner MK, Carpenter ML, Mancuso JJ, Wang C-JR, Dawson SC, et al. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science. 2008;319:1530–1533. PubMed

Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. PubMed

Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol. 2010;8:413–422. PubMed

Elmendorf HG, Dawson SC, McCaffery JM. The cytoskeleton of Giardia lamblia. Int J Parasitol. 2003;33:3–28. PubMed

Konrad C, Spycher C, Hehl AB. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog. 2010;6:e1000835. PubMed PMC

Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature. 2008;456:750–754. PubMed

Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6:e17285. PubMed PMC

Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, et al. The Core Components of Organelle Biogenesis and Membrane Transport in the Hydrogenosomes of Trichomonas vaginalis. PLoS ONE. 2011;6:e24428. PubMed PMC

Simpson AGB. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol. 2003;53:1759–1777. PubMed

Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440:623–630. PubMed

Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdý I, et al. Frataxin, a conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2007;6:1431–1438. PubMed PMC

Mukherjee M, Brown MT, McArthur AG, Johnson PJ. Proteins of the glycine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2006;5:2062–2071. PubMed PMC

Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41:1421–1434. PubMed PMC

Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell. 2009;8:916–919. PubMed PMC

Davis-Hayman SR, Nash TE. Genetic manipulation of Giardia lamblia. Mol Biochem Parasitol. 2002;122:1–7. PubMed

Gourguechon S, Cande WZ. Rapid tagging and integration of genes in Giardia intestinalis. Eukaryot Cell. 2011;10:142–145. PubMed PMC

Saraiya AA, Wang CC. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 2008;4:e1000224. PubMed PMC

Yu DC, Wang AL, Wu CH, Wang CC. Virus-mediated expression of firefly luciferase in the parasitic protozoan Giardia lamblia. Mol Cell Biol. 1995;15:4867–4872. PubMed PMC

Dawson SC, House SA. Imaging and analysis of the microtubule cytoskeleton in giardia. Methods Cell Biol. 2010;97:307–339. PubMed

Regoes A, Hehl A. SNAP-tag™ mediated live cell labeling as an alternative to GFP in anaerobic organisms. Biotechniques. 2005;39:809–812. PubMed

Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, et al. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem. 2008;283:35996–36010. PubMed PMC

Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90:1103–1163. PubMed

Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. PubMed

Lloyd D, Harris JC, Maroulis S, Biagini GA, Wadley RB, et al. The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology. 2000;146 Pt 12:3109–3118. PubMed

Smutná T, Gonçalves VL, Saraiva LM, Tachezy J, Teixeira M, et al. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot Cell. 2009;8:47–55. PubMed PMC

Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009;122:2846–2856. PubMed

House S a, Richter DJ, Pham JK, Dawson SC. Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog. 2011;7:e1002167. PubMed PMC

Wombacher R, Cornish VW. Chemical tags: Applications in live cell fluorescence imaging. J Biophotonics. 2011;4:391–402. PubMed

Gautier A, Juillerat A, Heinis C, Corrêa IR, Kindermann M, et al. An engineered protein tag for multiprotein labeling in living cells. Chem Biol. 2008;15:128–136. PubMed

Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A. 2004;101:9955–9959. PubMed PMC

Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol. 2008;3:373–382. PubMed

Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, et al. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol. 2007;152:80–89. PubMed PMC

Yu DC, Wang AL, Wang CC. Stable coexpression of a drug-resistance gene and a heterologous gene in an ancient parasitic protozoan Giardia lamblia. Mol Biochem Parasitol. 1996;83:81–91. PubMed

Delgadillo MG, Liston DR, Niazi K, Johnson PJ. Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A. 1997;94:4716–4720. PubMed PMC

Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, et al. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 2009;26:1941–1947. PubMed PMC

Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, et al. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog. 2010;6:e1000812. PubMed PMC

Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004;432:618–622. PubMed

Shiflett AM, Johnson PJ. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol. 2010;64:409–429. PubMed PMC

Smith A, Johnson P. Gene expression in the unicellular eukaryote Trichomonas vaginalis. Res Microbiol. n.d.;162:646–654. PubMed

Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102:10924–10929. PubMed PMC

Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, et al. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol. 1996;83:221–234. PubMed

Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol. 2006;24:461–465. PubMed

Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods. 2008;5:545–551. PubMed PMC

Griffin BA, Adams SR, Tsien RY. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 1998;281:269–272. PubMed

Yamaguchi K, Inoue S, Ohara O, Nagase T. Pulse-chase experiment for the analysis of protein stability in cultured mammalian cells by covalent fluorescent labeling of fusion proteins. Methods Mol Biol. 2009;577:121–131. PubMed

Urh M, Hartzell D, Mendez J, Klaubert DH, Wood K. Methods for detection of protein-protein and protein-DNA interactions using HaloTag. Methods Mol Biol. 2008;421:191–209. PubMed

Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–884. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...