Nuclear actin and lamins in viral infections
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22590674
PubMed Central
PMC3347030
DOI
10.3390/v4030325
PII: v4030325
Knihovny.cz E-zdroje
- Klíčová slova
- viruses, cytoskeleton, lamin, nuclear actin, nuclear lamina, nucleus,
- MeSH
- aktiny metabolismus MeSH
- Baculoviridae metabolismus patogenita MeSH
- buněčné jádro metabolismus virologie MeSH
- cytoskelet MeSH
- Herpesviridae metabolismus patogenita MeSH
- herpetické infekce metabolismus patologie virologie MeSH
- laminy metabolismus MeSH
- lidé MeSH
- replikace viru * MeSH
- Retroviridae metabolismus patogenita MeSH
- retrovirové infekce metabolismus patologie virologie MeSH
- sestavení viru * MeSH
- virové nemoci metabolismus virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- aktiny MeSH
- laminy MeSH
Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.
Zobrazit více v PubMed
Radtke K., Dohner K., Sodeik B. Viral interactions with the cytoskeleton: A hitchhiker’s guide to the cell. Cell. Microbiol. 2006;8:387–400. PubMed
Clark T.G., Rosenbaum J.L. An actin filament matrix in hand-isolated nuclei of x. Laevis oocytes. Cell. 1979;18:1101–1108. doi: 10.1016/0092-8674(79)90223-X. PubMed DOI
Scheer U., Hinssen H., Franke W.W., Jockusch B.M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell. 1984;39:111–122. PubMed
Miralles F., Visa N. Actin in transcription and transcription regulation. Curr. Opin. Cell Biol. 2006;18:261–266. PubMed
Zheng B., Han M., Bernier M., Wen J.K. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J. 2009;276:2669–2685. PubMed PMC
Olave I.A., Reck-Peterson S.L., Crabtree G.R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 2002;71:755–781. PubMed
Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., et al. Actin is part of pre-initiation complexes and is necessary for transcription by rna polymerase ii. Nat. Cell Biol. 2004;6:1094–1101. doi: 10.1038/ncb1182. PubMed DOI
Hu P., Wu S., Hernandez N. A role for beta-actin in rna polymerase iii transcription. Genes Dev. 2004;18:3010–3015. PubMed PMC
Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., et al. Nuclear actin and myosin i are required for rna polymerase i transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI
Percipalle P., Zhao J., Pope B., Weeds A., Lindberg U., Daneholt B. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with balbiani ring mrna from the gene to polysomes. J. Cell Biol. 2001;153:229–236. PubMed PMC
Percipalle P., Jonsson A., Nashchekin D., Karlsson C., Bergman T., Guialis A., Daneholt B. Nuclear actin is associated with a specific subset of hnrnp a/b-type proteins. Nucleic Acids Res. 2002;30:1725–1734. PubMed PMC
Kukalev A., Nord Y., Palmberg C., Bergman T., Percipalle P. Actin and hnrnp u cooperate for productive transcription by rna polymerase ii. Nat. Struct. Mol. Biol. 2005;12:238–244. PubMed
Sjölinder M., Björk P., Söderberg E., Sabri N., Farrants A.K., Visa N. The growing pre-mrna recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev. 2005;19:1871–1884. PubMed PMC
Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. Rapid and phosphoinositol-dependent binding of the swi/snf-like baf complex to chromatin after t lymphocyte receptor signaling. Cell. 1998;95:625–636. PubMed
Nowak G., Pestic-Dragovich L., Hozák P., Philimonenko A., Simerly C., Schatten G., de Lanerolle P. Evidence for the presence of myosin i in the nucleus. J. Biol. Chem. 1997;272:17176–17181. PubMed
Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin i isoform in the nucleus. Science. 2000;290:337–341. PubMed
Hofmann W.A., Vargas G.M., Ramchandran R., Stojiljkovic L., Goodrich J.A., de Lanerolle P. Nuclear myosin i is necessary for the formation of the first phosphodiester bond during transcription initiation by rna polymerase ii. J. Cell Biochem. 2006;99:1001–1009. PubMed
Percipalle P., Fomproix N., Cavellán E., Voit R., Reimer G., Krüger T., Thyberg J., Scheer U., Grummt I., Farrants A.K. The chromatin remodelling complex wstf-snf2h interacts with nuclear myosin 1 and has a role in rna polymerase i transcription. EMBO Rep. 2006;7:525–530. PubMed PMC
Philimonenko V.V., Janacek J., Harata M., Hozak P. Transcription-dependent rearrangements of actin and nuclear myosin i in the nucleolus. Histochem. Cell Biol. 2010;134:243–249. PubMed
Fomproix N., Percipalle P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 2004;294:140–148. PubMed
Kyselá K., Philimonenko A.A., Philimonenko V.V., Janácek J., Kahle M., Hozák P. Nuclear distribution of actin and myosin i depends on transcriptional activity of the cell. Histochem. Cell Biol. 2005;124:347–358. PubMed
Pederson T., Aebi U. Actin in the nucleus: What form and what for? J. Struct. Biol. 2002;140:3–9. doi: 10.1016/S1047-8477(02)00528-2. PubMed DOI
Bettinger B.T., Gilbert D.M., Amberg D.C. Actin up in the nucleus. Nat. Rev. Mol. Cell Biol. 2004;5:410–415. PubMed
Gonsior S.M., Platz S., Buchmeier S., Scheer U., Jockusch B.M., Hinssen H. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 1999;112:797–809. PubMed
Schoenenberger C.A., Buchmeier S., Boerries M., Sütterlin R., Aebi U., Jockusch B.M. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct. Biol. 2005;152:157–168. PubMed
McDonald D., Carrero G., Andrin C., de Vries G., Hendzel M.J. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 2006;172:541–552. PubMed PMC
Kiseleva E., Drummond S.P., Goldberg M.W., Rutherford S.A., Allen T.D., Wilson K.L. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in xenopus oocyte nuclei. J. Cell Sci. 2004;117:2481–2490. doi: 10.1242/jcs.01098. PubMed DOI
Hofmann W., Reichart B., Ewald A., Müller E., Schmitt I., Stauber R.H., Lottspeich F., Jockusch B.M., Scheer U., Hauber J., et al. Cofactor requirements for nuclear export of rev response element (rre)- and constitutive transport element (cte)-containing retroviral rnas. An unexpected role for actin. J. Cell Biol. 2001;152:895–910. doi: 10.1083/jcb.152.5.895. PubMed DOI PMC
Kimura T., Hashimoto I., Yamamoto A., Nishikawa M., Fujisawa J.I. Rev-dependent association of the intron-containing hiv-1 gag mrna with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-b. Genes Cells. 2000;5:289–307. PubMed
Castano E., Philimonenko V.V., Kahle M., Fukalová J., Kalendová A., Yildirim S., Dzijak R., Dingová-Krásna H., Hozák P. Actin complexes in the cell nucleus: New stones in an old field. Histochem. Cell Biol. 2010;133:607–626. PubMed
Chen M., Shen X. Nuclear actin and actin-related proteins in chromatin dynamics. Curr. Opin. Cell Biol. 2007;19:326–330. PubMed
Yahara I., Aizawa H., Moriyama K., Iida K., Yonezawa N., Nishida E., Hatanaka H., Inagaki F. A role of cofilin/destrin in reorganization of actin cytoskeleton in response to stresses and cell stimuli. Cell Struct. Funct. 1996;21:421–424. PubMed
van Hal S.J., Dwyer D.E. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2001. Herpes Simplex: Viruses and Infections.
Grünewald K., Desai P., Winkler D.C., Heymann J.B., Belnap D.M., Baumeister W., Steven A.C. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396–1398. PubMed
Randall R.E., Dinwoodie N. Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: Evidence that icp 4 is associated with progeny virus DNA. J. Gen. Virol. 1986;67:2163–2177. PubMed
Knipe D.M., Senechek D., Rice S.A., Smith J.L. Stages in the nuclear association of the herpes simplex virus transcriptional activator protein icp4. J. Virol. 1987;61:276–284. PubMed PMC
Phelan A., Dunlop J., Patel A.H., Stow N.D., Clements J.B. Nuclear sites of herpes simplex virus type 1 DNA replication and transcription colocalize at early times postinfection and are largely distinct from rna processing factors. J. Virol. 1997;71:1124–1132. PubMed PMC
Ward P.L., Ogle W.O., Roizman B. Assemblons: Nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. J. Virol. 1996;70:4623–4631. PubMed PMC
de Bruyn Kops A., Uprichard S.L., Chen M., Knipe D.M. Comparison of the intranuclear distributions of herpes simplex virus proteins involved in various viral functions. Virology. 1998;252:162–178. PubMed
Leopardi R., Ward P.L., Ogle W.O., Roizman B. Association of herpes simplex virus regulatory protein icp22 with transcriptional complexes containing eap, icp4, rna polymerase ii, and viral DNA requires posttranslational modification by the u(l)13 proteinkinae. J. Virol. 1997;71:1133–1139. PubMed PMC
Quinlan M.P., Chen L.B., Knipe D.M. The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell. 1984;36:857–868. PubMed
de Bruyn Kops A., Knipe D.M. Preexisting nuclear architecture defines the intranuclear location of herpesvirus DNA replication structures. J. Virol. 1994;68:3512–3526. PubMed PMC
Taylor T.J., McNamee E.E., Day C., Knipe D.M. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology. 2003;309:232–247. PubMed
Monier K., Armas J.C., Etteldorf S., Ghazal P., Sullivan K.F. Annexation of the interchromosomal space during viral infection. Nat. Cell Biol. 2000;2:661–665. PubMed
Scott E.S., O’Hare P. Fate of the inner nuclear membrane protein lamin b receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 2001;75:8818–8830. PubMed PMC
Simpson-Holley M., Colgrove R.C., Nalepa G., Harper J.W., Knipe D.M. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J. Virol. 2005;79:12840–12851. PubMed PMC
Simpson-Holley M., Baines J., Roller R., Knipe D.M. Herpes simplex virus 1 u(l)31 and u(l)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J. Virol. 2004;78:5591–5600. PubMed PMC
Feierbach B., Piccinotti S., Bisher M., Denk W., Enquist L.W. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2006;2:e85. PubMed PMC
Ecob-Johnston M.S., Whetsell W.O. Host-cell response to herpes virus infection in central and peripheral nervous tissue in vitro. J. Gen. Virol. 1979;44:747–757. PubMed
Forest T., Barnard S., Baines J.D. Active intranuclear movement of herpesvirus capsids. Nat. Cell Biol. 2005;7:429–431. PubMed
Nalepa G., Harper J.W. Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil. Cytoskelet. 2004;59:94–108. PubMed
Wong M.L., Chen C.H. Evidence for the internal location of actin in the pseudorabies virion. Virus Res. 1998;56:191–197. PubMed
del Rio T., DeCoste C.J., Enquist L.W. Actin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein vp22. J. Virol. 2005;79:8614–8619. PubMed PMC
Varnum S.M., Streblow D.N., Monroe M.E., Smith P., Auberry K.J., Pasa-Tolic L., Wang D., Camp D.G., Rodland K., Wiley S., et al. Identification of proteins in human cytomegalovirus (hcmv) particles: The hcmv proteome. J. Virol. 2004;78:10960–10966. PubMed PMC
Kattenhorn L.M., Mills R., Wagner M., Lomsadze A., Makeev V., Borodovsky M., Ploegh H.L., Kessler B.M. Identification of proteins associated with murine cytomegalovirus virions. J. Virol. 2004;78:11187–11197. PubMed PMC
Bechtel J.T., Winant R.C., Ganem D. Host and viral proteins in the virion of kaposi’s sarcoma-associated herpesvirus. J. Virol. 2005;79:4952–4964. PubMed PMC
Zhu F.X., Chong J.M., Wu L., Yuan Y. Virion proteins of kaposi’s sarcoma-associated herpesvirus. J. Virol. 2005;79:800–811. PubMed PMC
Baines J.D., Hsieh C.E., Wills E., Mannella C., Marko M. Electron tomography of nascent herpes simplex virus virions. J. Virol. 2007;81:2726–2735. PubMed PMC
Guarino L. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2001. Baculoviruses.
Nagamine T., Kawasaki Y., Abe A., Matsumoto S. Nuclear marginalization of host cell chromatin associated with expansion of two discrete virus-induced subnuclear compartments during baculovirus infection. J. Virol. 2008;82:6409–6418. PubMed PMC
Volkman L.E., Goldsmith P.A., Hess R.T. Evidence for microfilament involvement in budded autographa californica nuclear polyhedrosis virus production. Virology. 1987;156:32–39. PubMed
Volkman L.E. Autographa californica mnpv nucleocapsid assembly: Inhibition by cytochalasin d. Virology. 1988;163:547–553. PubMed
Hess R.T., Goldsmith P.A., Volkman L.E. Effect of cytochalasin d on cell morphology and acmnpv replication in a spodoptera frugiperda cell line. J. Invertebr. Pathol. 1989;53:169–182. PubMed
Volkman L.E., Talhouk S.N., Oppenheimer D.I., Charlton C.A. Nuclear f-actin - a functional component of baculovirus-infected lepidopteran cells. J. Cell Sci. 1992;103:15–22.
Charlton C.A., Volkman L.E. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected spodoptera frugiperda cells. J. Virol. 1991;65:1219–1227. PubMed PMC
Ohkawa T., Volkman L.E. Nuclear f-actin is required for acmnpv nucleocapsid morphogenesis. Virology. 1999;264:1–4. PubMed
Kasman L.M., Volkman L.E. Filamentous actin is required for lepidopteran nucleopolyhedrovirus progeny production. J. Gen. Virol. 2000;81:1881–1888. PubMed
Ohkawa T., Rowe A.R., Volkman L.E. Identification of six autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of g-actin. J. Virol. 2002;76:12281–12289. PubMed PMC
Lanier L.M., Volkman L.E. Actin binding and nucleation by autographa california m nucleopolyhedrovirus. Virology. 1998;243:167–177. PubMed
Charlton C.A., Volkman L.E. Penetration of autographa californica nuclear polyhedrosis virus nucleocapsids into iplb sf 21 cells induces actin cable formation. Virology. 1993;197:245–254. PubMed
Goley E.D., Ohkawa T., Mancuso J., Woodruff J.B., D’Alessio J.A., Cande W.Z., Volkman L.E., Welch M.D. Dynamic nuclear actin assembly by arp2/3 complex and a baculovirus wasp-like protein. Science. 2006;314:464–467. PubMed
Machesky L.M., Insall R.H., Volkman L.E. Wasp homology sequences in baculoviruses. Trends Cell Biol. 2001;11:286–287. PubMed
Wang Y., Wang Q., Liang C., Song J., Li N., Shi H., Chen X. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein bv/odv-c42 mediates the nuclear entry of p78/83. J. Virol. 2008;82:4554–4561. PubMed PMC
Li K., Wang Y., Bai H., Wang Q., Song J., Zhou Y., Wu C., Chen X. The putative pocket protein binding site of autographa californica nucleopolyhedrovirus bv/odv-c42 is required for virus-induced nuclear actin polymerization. J. Virol. 2010;84:7857–7868. PubMed PMC
Wang Q., Liang C., Song J., Chen X. Ha2 from the helicoverpa armigera nucleopolyhedrovirus: A wasp-related protein that activates arp2/3-induced actin filament formation. Virus Res. 2007;127:81–87. PubMed
Marek M., Merten O.W., Galibert L., Vlak J.M., van Oers M.M. Baculovirus vp80 protein and the f-actin cytoskeleton interact connecting the viral replication factory with the nuclear periphery. J. Virol. 2011;85:5350–5362. PubMed PMC
Marek M., van Oers M.M., Devaraj F.F., Vlak J.M., Merten O.W. Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol. Bioeng. 2011;108:1056–1067. PubMed
Cullen B.R. Nuclear mrna export: Insights from virology. Trends Biochem. Sci. 2003;28:419–424. PubMed
Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. PubMed
Goldberg M.W., Huttenlauch I., Hutchison C.J., Stick R. Filaments made from a- and b-type lamins differ in structure and organization. J. Cell Sci. 2008;121:215–225. PubMed
Bridger J.M., Kill I.R., O’Farrell M., Hutchison C.J. Internal lamin structures within g1 nuclei of human dermal fibroblasts. J. Cell Sci. 1993;104:297–306. PubMed
Goldman A.E., Moir R.D., Montag-Lowy M., Stewart M., Goldman R.D. Pathway of incorporation of microinjected lamin a into the nuclear envelope. J. Cell Biol. 1992;119:725–735. PubMed PMC
Moir R.D., Montag-Lowy M., Goldman R.D. Dynamic properties of nuclear lamins: Lamin b is associated with sites of DNA replication. J. Cell Biol. 1994;125:1201–1212. PubMed PMC
Hozák P., Sasseville A.M., Raymond Y., Cook P.R. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 1995;108:635–644. PubMed
Barboro P., D’Arrigo C., Diaspro A., Mormino M., Alberti I., Parodi S., Patrone E., Balbi C. Unraveling the organization of the internal nuclear matrix: Rna-dependent anchoring of numa to a lamin scaffold. Exp. Cell Res. 2002;279:202–218. PubMed
Barboro P., D’Arrigo C., Mormino M., Coradeghini R., Parodi S., Patrone E., Balbi C. An intranuclear frame for chromatin compartmentalization and higher-order folding. J. Cell. Biochem. 2003;88:113–120. PubMed
Neri L.M., Raymond Y., Giordano A., Capitani S., Martelli A.M. Lamin a is part of the internal nucleoskeleton of human erythroleukemia cells. J. Cell. Physiol. 1999;178:284–295. PubMed
Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D.Z., Barkan R., Meshorer E., Gruenbaum Y. Nuclear lamins: Key regulators of nuclear structure and activities. J. Cell. Mol. Med. 2009;13:1059–1085. PubMed PMC
Worman H.J., Bonne G. Laminopathies”: A wide spectrum of human diseases. Exp. Cell Res. 2007;313:2121–2133. PubMed PMC
Panté N., Kann M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell. 2002;13:425–434. PubMed PMC
Skepper J.N., Whiteley A., Browne H., Minson A. Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment --> deenvelopment --> reenvelopment pathway. J. Virol. 2001;75:5697–5702. PubMed PMC
Nagel C.H., Döhner K., Fathollahy M., Strive T., Borst E.M., Messerle M., Sodeik B. Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence hsv1(17+). J. Virol. 2008;82:3109–3124. PubMed PMC
Lee C.P., Chen M.R. Escape of herpesviruses from the nucleus. Rev. Med. Virol. 2010;20:214–230. PubMed
Roller R.J., Zhou Y., Schnetzer R., Ferguson J., DeSalvo D. Herpes simplex virus type 1 u(l)34 gene product is required for viral envelopment. J. Virol. 2000;74:117–129. PubMed PMC
Chang Y.E., Roizman B. The product of the ul31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J. Virol. 1993;67:6348–6356. PubMed PMC
Reynolds A.E., Ryckman B.J., Baines J.D., Zhou Y., Liang L., Roller R.J. U(l)31 and u(l)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J. Virol. 2001;75:8803–8817. PubMed PMC
Reynolds A.E., Wills E.G., Roller R.J., Ryckman B.J., Baines J.D. Ultrastructural localization of the herpes simplex virus type 1 ul31, ul34, and us3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol. 2002;76:8939–8952. PubMed PMC
Liang L., Baines J.D. Identification of an essential domain in the herpes simplex virus 1 ul34 protein that is necessary and sufficient to interact with ul31 protein. J. Virol. 2005;79:3797–3806. PubMed PMC
Mou F., Wills E.G., Park R., Baines J.D. Effects of lamin a/c, lamin b1, and viral us3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus u(l)34-encoded protein to the inner nuclear membrane. J. Virol. 2008;82:8094–8104. doi: 10.1128/JVI.00874-08. PubMed DOI PMC
Bjerke S.L., Roller R.J. Roles for herpes simplex virus type 1 ul34 and us3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology. 2006;347:261–276. PubMed PMC
Reynolds A.E., Liang L., Baines J.D. Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes u(l)31 and u(l)34. J. Virol. 2004;78:5564–5575. PubMed PMC
Ryckman B.J., Roller R.J. Herpes simplex virus type 1 primary envelopment: Ul34 protein modification and the us3-ul34 catalytic relationship. J. Virol. 2004;78:399–412. PubMed PMC
Mou F., Wills E., Baines J.D. Phosphorylation of the u(l)31 protein of herpes simplex virus 1 by the u(s)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J. Virol. 2009;83:5181–5191. PubMed PMC
Mou F., Forest T., Baines J.D. Us3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin a/c in infected cells. J. Virol. 2007;81:6459–6470. PubMed PMC
Morris J.B., Hofemeister H., O’Hare P. Herpes simplex virus infection induces phosphorylationand delocalization of emerin, a key inner nuclear membrane protein. J. Virol. 2007;81:4429–4437. PubMed PMC
Leach N., Bjerke S.L., Christensen D.K., Bouchard J.M., Mou F., Park R., Baines J., Haraguchi T., Roller R.J. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both ul34 and us3. J. Virol. 2007;81:10792–10803. PubMed PMC
Leach N.R., Roller R.J. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology. 2010;406:127–137. PubMed PMC
Kato A., Yamamoto M., Ohno T., Tanaka M., Sata T., Nishiyama Y., Kawaguchi Y. Herpes simplex virus 1-encoded protein kinase ul13 phosphorylates viral us3 protein kinase and regulates nuclear localization of viral envelopment factors ul34 and ul31. J. Virol. 2006;80:1476–1486. PubMed PMC
Cano-Monreal G.L., Wylie K.M., Cao F., Tavis J.E., Morrison L.A. Herpes simplex virus 2 ul13 protein kinase disrupts nuclear lamins. Virology. 2009;392:137–147. PubMed PMC
Park R., Baines J.D. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase c to the nuclear membrane and increased phosphorylation of lamin b. J. Virol. 2006;80:494–504. PubMed PMC
Shiba C., Daikoku T., Goshima F., Takakuwa H., Yamauchi Y., Koiwai O., Nishiyama Y. The ul34 gene product of herpes simplex virus type 2 is a tail-anchored type ii membrane protein that is significant for virus envelopment. J. Gen. Virol. 2000;81:2397–2405. PubMed
Yamauchi Y., Shiba C., Goshima F., Nawa A., Murata T., Nishiyama Y. Herpes simplex virus type 2 ul34 protein requires ul31 protein for its relocation to the internal nuclear membrane in transfected cells. J. Gen. Virol. 2001;82:1423–1428. PubMed
Klupp B.G., Granzow H., Mettenleiter T.C. Primary envelopment of pseudorabies virus at the nuclear membrane requires the ul34 gene product. J. Virol. 2000;74:10063–10073. PubMed PMC
Fuchs W., Klupp B.G., Granzow H., Osterrieder N., Mettenleiter T.C. The interacting ul31 and ul34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J. Virol. 2002;76:364–378. PubMed PMC
Camozzi D., Pignatelli S., Valvo C., Lattanzi G., Capanni C., Dal Monte P., Landini M.P. Remodelling of the nuclear lamina during human cytomegalovirus infection: Role of the viral proteins pul50 and pul53. J. Gen. Virol. 2008;89:731–740. PubMed
Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U.H. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science. 2002;297:854–857. PubMed
Lake C.M., Hutt-Fletcher L.M. The epstein-barr virus bfrf1 and bflf2 proteins interact and coexpression alters their cellular localization. Virology. 2004;320:99–106. PubMed
Farina A., Feederle R., Raffa S., Gonnella R., Santarelli R., Frati L., Angeloni A., Torrisi M.R., Faggioni A., Delecluse H.J. Bfrf1 of epstein-barr virus is essential for efficient primary viral envelopment and egress. J. Virol. 2005;79:3703–3712. PubMed PMC
Gonnella R., Farina A., Santarelli R., Raffa S., Feederle R., Bei R., Granato M., Modesti A., Frati L., Delecluse H.J., et al. Characterization and intracellular localization of the epstein-barr virus protein bflf2: Interactions with bfrf1 and with the nuclear lamina. J. Virol. 2005;79:3713–3727. PubMed PMC
Milbradt J., Auerochs S., Marschall M. Cytomegaloviral proteins pul50 and pul53 are associated with the nuclear lamina and interact with cellular protein kinase c. J. Gen. Virol. 2007;88:2642–2650. PubMed
Milbradt J., Auerochs S., Sticht H., Marschall M. Cytomegaloviral proteins that associate with the nuclear lamina: Components of a postulated nuclear egress complex. J. Gen. Virol. 2009;90:579–590. PubMed
Marschall M., Marzi A., aus dem Siepen P., Jochmann R., Kalmer M., Auerochs S., Lischka P., Leis M., Stamminger T. Cellular p32 recruits cytomegalovirus kinase pul97 to redistribute the nuclear lamina. J. Biol. Chem. 2005;280:33357–33367. PubMed
Hamirally S., Kamil J.P., Ndassa-Colday Y.M., Lin A.J., Jahng W.J., Baek M.C., Noton S., Silva L.A., Simpson-Holley M., Knipe D.M., et al. Viral mimicry of cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 2009;5:e1000275. PubMed PMC
Prichard M.N. Function of human cytomegalovirus ul97 kinase in viral infection and its inhibition by maribavir. Rev. Med. Virol. 2009;19:215–229. PubMed PMC
Milbradt J., Webel R., Auerochs S., Sticht H., Marschall M. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J. Biol. Chem. 2010;285:13979–13989. PubMed PMC
Lee C.P., Huang Y.H., Lin S.F., Chang Y., Chang Y.H., Takada K., Chen M.R. Epstein-barr virus bglf4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J. Virol. 2008;82:11913–11926. PubMed PMC
Miller M.S., Furlong W.E., Pennell L., Geadah M., Hertel L. Rascal is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection. J. Virol. 2010;84:6483–6496. PubMed PMC
Klupp B.G., Granzow H., Mettenleiter T.C. Effect of the pseudorabies virus us3 protein on nuclear membrane localization of the ul34 protein and virus egress from the nucleus. J. Gen. Virol. 2001;82:2363–2371. PubMed
Morimoto T., Arii J., Tanaka M., Sata T., Akashi H., Yamada M., Nishiyama Y., Uema M., Kawaguchi Y. Differences in the regulatory and functional effects of the us3 protein kinase activities of herpes simplex virus 1 and 2. J. Virol. 2009;83:11624–11634. PubMed PMC
de Noronha C.M., Sherman M.P., Lin H.W., Cavrois M.V., Moir R.D., Goldman R.D., Greene W.C. Dynamic disruptions in nuclear envelope architecture and integrity induced by hiv-1 vpr. Science. 2001;294:1105–1108. PubMed
Segura-Totten M., Wilson K.L. Hiv--breaking the rules for nuclear entry. Science. 2001;294:1016–1017. PubMed
Pelkmans L., Kartenbeck J., Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the er. Nat. Cell Biol. 2001;3:473–483. PubMed
Gilbert J.M., Benjamin T.L. Early steps of polyomavirus entry into cells. J. Virol. 2000;74:8582–8588. PubMed PMC
Gilbert J.M., Goldberg I.G., Benjamin T.L. Cell penetration and trafficking of polyomavirus. J. Virol. 2003;77:2615–2622. PubMed PMC
Richterova Z., Liebl D., Horak M., Palkova Z., Stokrova J., Hozak P., Korb J., Forstova J. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial vp1 pseudocapsids toward cell nuclei. J. Virol. 2001;75:10880–10891. PubMed PMC
Mannova P., Forstova J. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of copi vesicle transport. J. Virol. 2003;77:1672–1681. PubMed PMC
Liebl D., Difato F., Hornikova L., Mannova P., Stokrova J., Forstova J. Mouse polyomavirus enters early endosomes, requires their acidic ph for productive infection, and meets transferrin cargo in rab11-positive endosomes. J. Virol. 2006;80:4610–4622. PubMed PMC
Qian M., Cai D., Verhey K.J., Tsai B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog. 2009;5:e1000465. PubMed PMC
Maul G.G., Rovera G., Vorbrodt A., Abramczuk J. Membrane fusion as a mechanism of simian virus 40 entry into different cellular compartments. J. Virol. 1978;28:936–944. PubMed PMC
Mackay R.L., Consigli R.A. Early events in polyoma virus infection: Attachment, penetration, and nuclear entry. J. Virol. 1976;19:620–636. PubMed PMC
Nakanishi A., Shum D., Morioka H., Otsuka E., Kasamatsu H. Interaction of the vp3 nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40. J. Virol. 2002;76:9368–9377. PubMed PMC
Gilbert J., Ou W., Silver J., Benjamin T. Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J. Virol. 2006;80:10868–10870. PubMed PMC
Lilley B.N., Gilbert J.M., Ploegh H.L., Benjamin T.L. Murine polyomavirus requires the endoplasmic reticulum protein derlin-2 to initiate infection. J. Virol. 2006;80:8739–8744. PubMed PMC
Schelhaas M., Malmstrom J., Pelkmans L., Haugstetter J., Ellgaard L., Grunewald K., Helenius A. Simian virus 40 depends on er protein folding and quality control factors for entry into host cells. Cell. 2007;131:516–529. PubMed
Kuksin D., Norkin L.C. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm. J. Virol. 2012;86:1555–1562. PubMed PMC
Butin-Israeli V., Ben-Nun-Shaul O., Kopatz I., Adam S.A., Shimi T., Goldman R.D., Oppenheim A. Simian virus 40 induces lamin a/c fluctuations and nuclear envelope deformation during cell entry. Nucleus. 2011;2 [Epub ahead of print] PubMed PMC
Daniels R., Rusan N.M., Wadsworth P., Hebert D.N. Sv40 vp2 and vp3 insertion into er membranes is controlled by the capsid protein vp1: Implications for DNA translocation out of the er. Mol. Cell. 2006;24:955–966. PubMed
Rainey-Barger E.K., Magnuson B., Tsai B. A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J. Virol. 2007;81:12996–13004. PubMed PMC
Huerfano S., Zila V., Boura E., Spanielova H., Stokrova J., Forstova J. Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J. 2010;277:1270–1283. PubMed
Cohen S., Behzad A.R., Carroll J.B., Pante N. Parvoviral nuclear import: Bypassing the host nuclear-transport machinery. J. Gen. Virol. 2006;87:3209–3213. PubMed
Cohen S., Marr A.K., Garcin P., Pante N. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J. Virol. 2011;85:4863–4874. PubMed PMC
Hansen J., Qing K., Srivastava A. Infection of purified nuclei by adeno-associated virus 2. Mol. Ther. 2001;4:289–296. PubMed
The actin family protein ARP6 contributes to the structure and the function of the nucleolus