Nuclear actin and lamins in viral infections

. 2012 Mar ; 4 (3) : 325-47. [epub] 20120228

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid22590674

Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.

Zobrazit více v PubMed

Radtke K., Dohner K., Sodeik B. Viral interactions with the cytoskeleton: A hitchhiker’s guide to the cell. Cell. Microbiol. 2006;8:387–400. PubMed

Clark T.G., Rosenbaum J.L. An actin filament matrix in hand-isolated nuclei of x. Laevis oocytes. Cell. 1979;18:1101–1108. doi: 10.1016/0092-8674(79)90223-X. PubMed DOI

Scheer U., Hinssen H., Franke W.W., Jockusch B.M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell. 1984;39:111–122. PubMed

Miralles F., Visa N. Actin in transcription and transcription regulation. Curr. Opin. Cell Biol. 2006;18:261–266. PubMed

Zheng B., Han M., Bernier M., Wen J.K. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J. 2009;276:2669–2685. PubMed PMC

Olave I.A., Reck-Peterson S.L., Crabtree G.R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 2002;71:755–781. PubMed

Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., et al. Actin is part of pre-initiation complexes and is necessary for transcription by rna polymerase ii. Nat. Cell Biol. 2004;6:1094–1101. doi: 10.1038/ncb1182. PubMed DOI

Hu P., Wu S., Hernandez N. A role for beta-actin in rna polymerase iii transcription. Genes Dev. 2004;18:3010–3015. PubMed PMC

Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., et al. Nuclear actin and myosin i are required for rna polymerase i transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI

Percipalle P., Zhao J., Pope B., Weeds A., Lindberg U., Daneholt B. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with balbiani ring mrna from the gene to polysomes. J. Cell Biol. 2001;153:229–236. PubMed PMC

Percipalle P., Jonsson A., Nashchekin D., Karlsson C., Bergman T., Guialis A., Daneholt B. Nuclear actin is associated with a specific subset of hnrnp a/b-type proteins. Nucleic Acids Res. 2002;30:1725–1734. PubMed PMC

Kukalev A., Nord Y., Palmberg C., Bergman T., Percipalle P. Actin and hnrnp u cooperate for productive transcription by rna polymerase ii. Nat. Struct. Mol. Biol. 2005;12:238–244. PubMed

Sjölinder M., Björk P., Söderberg E., Sabri N., Farrants A.K., Visa N. The growing pre-mrna recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev. 2005;19:1871–1884. PubMed PMC

Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. Rapid and phosphoinositol-dependent binding of the swi/snf-like baf complex to chromatin after t lymphocyte receptor signaling. Cell. 1998;95:625–636. PubMed

Nowak G., Pestic-Dragovich L., Hozák P., Philimonenko A., Simerly C., Schatten G., de Lanerolle P. Evidence for the presence of myosin i in the nucleus. J. Biol. Chem. 1997;272:17176–17181. PubMed

Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin i isoform in the nucleus. Science. 2000;290:337–341. PubMed

Hofmann W.A., Vargas G.M., Ramchandran R., Stojiljkovic L., Goodrich J.A., de Lanerolle P. Nuclear myosin i is necessary for the formation of the first phosphodiester bond during transcription initiation by rna polymerase ii. J. Cell Biochem. 2006;99:1001–1009. PubMed

Percipalle P., Fomproix N., Cavellán E., Voit R., Reimer G., Krüger T., Thyberg J., Scheer U., Grummt I., Farrants A.K. The chromatin remodelling complex wstf-snf2h interacts with nuclear myosin 1 and has a role in rna polymerase i transcription. EMBO Rep. 2006;7:525–530. PubMed PMC

Philimonenko V.V., Janacek J., Harata M., Hozak P. Transcription-dependent rearrangements of actin and nuclear myosin i in the nucleolus. Histochem. Cell Biol. 2010;134:243–249. PubMed

Fomproix N., Percipalle P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 2004;294:140–148. PubMed

Kyselá K., Philimonenko A.A., Philimonenko V.V., Janácek J., Kahle M., Hozák P. Nuclear distribution of actin and myosin i depends on transcriptional activity of the cell. Histochem. Cell Biol. 2005;124:347–358. PubMed

Pederson T., Aebi U. Actin in the nucleus: What form and what for? J. Struct. Biol. 2002;140:3–9. doi: 10.1016/S1047-8477(02)00528-2. PubMed DOI

Bettinger B.T., Gilbert D.M., Amberg D.C. Actin up in the nucleus. Nat. Rev. Mol. Cell Biol. 2004;5:410–415. PubMed

Gonsior S.M., Platz S., Buchmeier S., Scheer U., Jockusch B.M., Hinssen H. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 1999;112:797–809. PubMed

Schoenenberger C.A., Buchmeier S., Boerries M., Sütterlin R., Aebi U., Jockusch B.M. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct. Biol. 2005;152:157–168. PubMed

McDonald D., Carrero G., Andrin C., de Vries G., Hendzel M.J. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 2006;172:541–552. PubMed PMC

Kiseleva E., Drummond S.P., Goldberg M.W., Rutherford S.A., Allen T.D., Wilson K.L. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in xenopus oocyte nuclei. J. Cell Sci. 2004;117:2481–2490. doi: 10.1242/jcs.01098. PubMed DOI

Hofmann W., Reichart B., Ewald A., Müller E., Schmitt I., Stauber R.H., Lottspeich F., Jockusch B.M., Scheer U., Hauber J., et al. Cofactor requirements for nuclear export of rev response element (rre)- and constitutive transport element (cte)-containing retroviral rnas. An unexpected role for actin. J. Cell Biol. 2001;152:895–910. doi: 10.1083/jcb.152.5.895. PubMed DOI PMC

Kimura T., Hashimoto I., Yamamoto A., Nishikawa M., Fujisawa J.I. Rev-dependent association of the intron-containing hiv-1 gag mrna with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-b. Genes Cells. 2000;5:289–307. PubMed

Castano E., Philimonenko V.V., Kahle M., Fukalová J., Kalendová A., Yildirim S., Dzijak R., Dingová-Krásna H., Hozák P. Actin complexes in the cell nucleus: New stones in an old field. Histochem. Cell Biol. 2010;133:607–626. PubMed

Chen M., Shen X. Nuclear actin and actin-related proteins in chromatin dynamics. Curr. Opin. Cell Biol. 2007;19:326–330. PubMed

Yahara I., Aizawa H., Moriyama K., Iida K., Yonezawa N., Nishida E., Hatanaka H., Inagaki F. A role of cofilin/destrin in reorganization of actin cytoskeleton in response to stresses and cell stimuli. Cell Struct. Funct. 1996;21:421–424. PubMed

van Hal S.J., Dwyer D.E. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2001. Herpes Simplex: Viruses and Infections.

Grünewald K., Desai P., Winkler D.C., Heymann J.B., Belnap D.M., Baumeister W., Steven A.C. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396–1398. PubMed

Randall R.E., Dinwoodie N. Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: Evidence that icp 4 is associated with progeny virus DNA. J. Gen. Virol. 1986;67:2163–2177. PubMed

Knipe D.M., Senechek D., Rice S.A., Smith J.L. Stages in the nuclear association of the herpes simplex virus transcriptional activator protein icp4. J. Virol. 1987;61:276–284. PubMed PMC

Phelan A., Dunlop J., Patel A.H., Stow N.D., Clements J.B. Nuclear sites of herpes simplex virus type 1 DNA replication and transcription colocalize at early times postinfection and are largely distinct from rna processing factors. J. Virol. 1997;71:1124–1132. PubMed PMC

Ward P.L., Ogle W.O., Roizman B. Assemblons: Nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. J. Virol. 1996;70:4623–4631. PubMed PMC

de Bruyn Kops A., Uprichard S.L., Chen M., Knipe D.M. Comparison of the intranuclear distributions of herpes simplex virus proteins involved in various viral functions. Virology. 1998;252:162–178. PubMed

Leopardi R., Ward P.L., Ogle W.O., Roizman B. Association of herpes simplex virus regulatory protein icp22 with transcriptional complexes containing eap, icp4, rna polymerase ii, and viral DNA requires posttranslational modification by the u(l)13 proteinkinae. J. Virol. 1997;71:1133–1139. PubMed PMC

Quinlan M.P., Chen L.B., Knipe D.M. The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell. 1984;36:857–868. PubMed

de Bruyn Kops A., Knipe D.M. Preexisting nuclear architecture defines the intranuclear location of herpesvirus DNA replication structures. J. Virol. 1994;68:3512–3526. PubMed PMC

Taylor T.J., McNamee E.E., Day C., Knipe D.M. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology. 2003;309:232–247. PubMed

Monier K., Armas J.C., Etteldorf S., Ghazal P., Sullivan K.F. Annexation of the interchromosomal space during viral infection. Nat. Cell Biol. 2000;2:661–665. PubMed

Scott E.S., O’Hare P. Fate of the inner nuclear membrane protein lamin b receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 2001;75:8818–8830. PubMed PMC

Simpson-Holley M., Colgrove R.C., Nalepa G., Harper J.W., Knipe D.M. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J. Virol. 2005;79:12840–12851. PubMed PMC

Simpson-Holley M., Baines J., Roller R., Knipe D.M. Herpes simplex virus 1 u(l)31 and u(l)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J. Virol. 2004;78:5591–5600. PubMed PMC

Feierbach B., Piccinotti S., Bisher M., Denk W., Enquist L.W. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2006;2:e85. PubMed PMC

Ecob-Johnston M.S., Whetsell W.O. Host-cell response to herpes virus infection in central and peripheral nervous tissue in vitro. J. Gen. Virol. 1979;44:747–757. PubMed

Forest T., Barnard S., Baines J.D. Active intranuclear movement of herpesvirus capsids. Nat. Cell Biol. 2005;7:429–431. PubMed

Nalepa G., Harper J.W. Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil. Cytoskelet. 2004;59:94–108. PubMed

Wong M.L., Chen C.H. Evidence for the internal location of actin in the pseudorabies virion. Virus Res. 1998;56:191–197. PubMed

del Rio T., DeCoste C.J., Enquist L.W. Actin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein vp22. J. Virol. 2005;79:8614–8619. PubMed PMC

Varnum S.M., Streblow D.N., Monroe M.E., Smith P., Auberry K.J., Pasa-Tolic L., Wang D., Camp D.G., Rodland K., Wiley S., et al. Identification of proteins in human cytomegalovirus (hcmv) particles: The hcmv proteome. J. Virol. 2004;78:10960–10966. PubMed PMC

Kattenhorn L.M., Mills R., Wagner M., Lomsadze A., Makeev V., Borodovsky M., Ploegh H.L., Kessler B.M. Identification of proteins associated with murine cytomegalovirus virions. J. Virol. 2004;78:11187–11197. PubMed PMC

Bechtel J.T., Winant R.C., Ganem D. Host and viral proteins in the virion of kaposi’s sarcoma-associated herpesvirus. J. Virol. 2005;79:4952–4964. PubMed PMC

Zhu F.X., Chong J.M., Wu L., Yuan Y. Virion proteins of kaposi’s sarcoma-associated herpesvirus. J. Virol. 2005;79:800–811. PubMed PMC

Baines J.D., Hsieh C.E., Wills E., Mannella C., Marko M. Electron tomography of nascent herpes simplex virus virions. J. Virol. 2007;81:2726–2735. PubMed PMC

Guarino L. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2001. Baculoviruses.

Nagamine T., Kawasaki Y., Abe A., Matsumoto S. Nuclear marginalization of host cell chromatin associated with expansion of two discrete virus-induced subnuclear compartments during baculovirus infection. J. Virol. 2008;82:6409–6418. PubMed PMC

Volkman L.E., Goldsmith P.A., Hess R.T. Evidence for microfilament involvement in budded autographa californica nuclear polyhedrosis virus production. Virology. 1987;156:32–39. PubMed

Volkman L.E. Autographa californica mnpv nucleocapsid assembly: Inhibition by cytochalasin d. Virology. 1988;163:547–553. PubMed

Hess R.T., Goldsmith P.A., Volkman L.E. Effect of cytochalasin d on cell morphology and acmnpv replication in a spodoptera frugiperda cell line. J. Invertebr. Pathol. 1989;53:169–182. PubMed

Volkman L.E., Talhouk S.N., Oppenheimer D.I., Charlton C.A. Nuclear f-actin - a functional component of baculovirus-infected lepidopteran cells. J. Cell Sci. 1992;103:15–22.

Charlton C.A., Volkman L.E. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected spodoptera frugiperda cells. J. Virol. 1991;65:1219–1227. PubMed PMC

Ohkawa T., Volkman L.E. Nuclear f-actin is required for acmnpv nucleocapsid morphogenesis. Virology. 1999;264:1–4. PubMed

Kasman L.M., Volkman L.E. Filamentous actin is required for lepidopteran nucleopolyhedrovirus progeny production. J. Gen. Virol. 2000;81:1881–1888. PubMed

Ohkawa T., Rowe A.R., Volkman L.E. Identification of six autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of g-actin. J. Virol. 2002;76:12281–12289. PubMed PMC

Lanier L.M., Volkman L.E. Actin binding and nucleation by autographa california m nucleopolyhedrovirus. Virology. 1998;243:167–177. PubMed

Charlton C.A., Volkman L.E. Penetration of autographa californica nuclear polyhedrosis virus nucleocapsids into iplb sf 21 cells induces actin cable formation. Virology. 1993;197:245–254. PubMed

Goley E.D., Ohkawa T., Mancuso J., Woodruff J.B., D’Alessio J.A., Cande W.Z., Volkman L.E., Welch M.D. Dynamic nuclear actin assembly by arp2/3 complex and a baculovirus wasp-like protein. Science. 2006;314:464–467. PubMed

Machesky L.M., Insall R.H., Volkman L.E. Wasp homology sequences in baculoviruses. Trends Cell Biol. 2001;11:286–287. PubMed

Wang Y., Wang Q., Liang C., Song J., Li N., Shi H., Chen X. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein bv/odv-c42 mediates the nuclear entry of p78/83. J. Virol. 2008;82:4554–4561. PubMed PMC

Li K., Wang Y., Bai H., Wang Q., Song J., Zhou Y., Wu C., Chen X. The putative pocket protein binding site of autographa californica nucleopolyhedrovirus bv/odv-c42 is required for virus-induced nuclear actin polymerization. J. Virol. 2010;84:7857–7868. PubMed PMC

Wang Q., Liang C., Song J., Chen X. Ha2 from the helicoverpa armigera nucleopolyhedrovirus: A wasp-related protein that activates arp2/3-induced actin filament formation. Virus Res. 2007;127:81–87. PubMed

Marek M., Merten O.W., Galibert L., Vlak J.M., van Oers M.M. Baculovirus vp80 protein and the f-actin cytoskeleton interact connecting the viral replication factory with the nuclear periphery. J. Virol. 2011;85:5350–5362. PubMed PMC

Marek M., van Oers M.M., Devaraj F.F., Vlak J.M., Merten O.W. Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol. Bioeng. 2011;108:1056–1067. PubMed

Cullen B.R. Nuclear mrna export: Insights from virology. Trends Biochem. Sci. 2003;28:419–424. PubMed

Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. PubMed

Goldberg M.W., Huttenlauch I., Hutchison C.J., Stick R. Filaments made from a- and b-type lamins differ in structure and organization. J. Cell Sci. 2008;121:215–225. PubMed

Bridger J.M., Kill I.R., O’Farrell M., Hutchison C.J. Internal lamin structures within g1 nuclei of human dermal fibroblasts. J. Cell Sci. 1993;104:297–306. PubMed

Goldman A.E., Moir R.D., Montag-Lowy M., Stewart M., Goldman R.D. Pathway of incorporation of microinjected lamin a into the nuclear envelope. J. Cell Biol. 1992;119:725–735. PubMed PMC

Moir R.D., Montag-Lowy M., Goldman R.D. Dynamic properties of nuclear lamins: Lamin b is associated with sites of DNA replication. J. Cell Biol. 1994;125:1201–1212. PubMed PMC

Hozák P., Sasseville A.M., Raymond Y., Cook P.R. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 1995;108:635–644. PubMed

Barboro P., D’Arrigo C., Diaspro A., Mormino M., Alberti I., Parodi S., Patrone E., Balbi C. Unraveling the organization of the internal nuclear matrix: Rna-dependent anchoring of numa to a lamin scaffold. Exp. Cell Res. 2002;279:202–218. PubMed

Barboro P., D’Arrigo C., Mormino M., Coradeghini R., Parodi S., Patrone E., Balbi C. An intranuclear frame for chromatin compartmentalization and higher-order folding. J. Cell. Biochem. 2003;88:113–120. PubMed

Neri L.M., Raymond Y., Giordano A., Capitani S., Martelli A.M. Lamin a is part of the internal nucleoskeleton of human erythroleukemia cells. J. Cell. Physiol. 1999;178:284–295. PubMed

Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D.Z., Barkan R., Meshorer E., Gruenbaum Y. Nuclear lamins: Key regulators of nuclear structure and activities. J. Cell. Mol. Med. 2009;13:1059–1085. PubMed PMC

Worman H.J., Bonne G. Laminopathies”: A wide spectrum of human diseases. Exp. Cell Res. 2007;313:2121–2133. PubMed PMC

Panté N., Kann M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell. 2002;13:425–434. PubMed PMC

Skepper J.N., Whiteley A., Browne H., Minson A. Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment --> deenvelopment --> reenvelopment pathway. J. Virol. 2001;75:5697–5702. PubMed PMC

Nagel C.H., Döhner K., Fathollahy M., Strive T., Borst E.M., Messerle M., Sodeik B. Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence hsv1(17+). J. Virol. 2008;82:3109–3124. PubMed PMC

Lee C.P., Chen M.R. Escape of herpesviruses from the nucleus. Rev. Med. Virol. 2010;20:214–230. PubMed

Roller R.J., Zhou Y., Schnetzer R., Ferguson J., DeSalvo D. Herpes simplex virus type 1 u(l)34 gene product is required for viral envelopment. J. Virol. 2000;74:117–129. PubMed PMC

Chang Y.E., Roizman B. The product of the ul31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J. Virol. 1993;67:6348–6356. PubMed PMC

Reynolds A.E., Ryckman B.J., Baines J.D., Zhou Y., Liang L., Roller R.J. U(l)31 and u(l)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J. Virol. 2001;75:8803–8817. PubMed PMC

Reynolds A.E., Wills E.G., Roller R.J., Ryckman B.J., Baines J.D. Ultrastructural localization of the herpes simplex virus type 1 ul31, ul34, and us3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol. 2002;76:8939–8952. PubMed PMC

Liang L., Baines J.D. Identification of an essential domain in the herpes simplex virus 1 ul34 protein that is necessary and sufficient to interact with ul31 protein. J. Virol. 2005;79:3797–3806. PubMed PMC

Mou F., Wills E.G., Park R., Baines J.D. Effects of lamin a/c, lamin b1, and viral us3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus u(l)34-encoded protein to the inner nuclear membrane. J. Virol. 2008;82:8094–8104. doi: 10.1128/JVI.00874-08. PubMed DOI PMC

Bjerke S.L., Roller R.J. Roles for herpes simplex virus type 1 ul34 and us3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology. 2006;347:261–276. PubMed PMC

Reynolds A.E., Liang L., Baines J.D. Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes u(l)31 and u(l)34. J. Virol. 2004;78:5564–5575. PubMed PMC

Ryckman B.J., Roller R.J. Herpes simplex virus type 1 primary envelopment: Ul34 protein modification and the us3-ul34 catalytic relationship. J. Virol. 2004;78:399–412. PubMed PMC

Mou F., Wills E., Baines J.D. Phosphorylation of the u(l)31 protein of herpes simplex virus 1 by the u(s)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J. Virol. 2009;83:5181–5191. PubMed PMC

Mou F., Forest T., Baines J.D. Us3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin a/c in infected cells. J. Virol. 2007;81:6459–6470. PubMed PMC

Morris J.B., Hofemeister H., O’Hare P. Herpes simplex virus infection induces phosphorylationand delocalization of emerin, a key inner nuclear membrane protein. J. Virol. 2007;81:4429–4437. PubMed PMC

Leach N., Bjerke S.L., Christensen D.K., Bouchard J.M., Mou F., Park R., Baines J., Haraguchi T., Roller R.J. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both ul34 and us3. J. Virol. 2007;81:10792–10803. PubMed PMC

Leach N.R., Roller R.J. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology. 2010;406:127–137. PubMed PMC

Kato A., Yamamoto M., Ohno T., Tanaka M., Sata T., Nishiyama Y., Kawaguchi Y. Herpes simplex virus 1-encoded protein kinase ul13 phosphorylates viral us3 protein kinase and regulates nuclear localization of viral envelopment factors ul34 and ul31. J. Virol. 2006;80:1476–1486. PubMed PMC

Cano-Monreal G.L., Wylie K.M., Cao F., Tavis J.E., Morrison L.A. Herpes simplex virus 2 ul13 protein kinase disrupts nuclear lamins. Virology. 2009;392:137–147. PubMed PMC

Park R., Baines J.D. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase c to the nuclear membrane and increased phosphorylation of lamin b. J. Virol. 2006;80:494–504. PubMed PMC

Shiba C., Daikoku T., Goshima F., Takakuwa H., Yamauchi Y., Koiwai O., Nishiyama Y. The ul34 gene product of herpes simplex virus type 2 is a tail-anchored type ii membrane protein that is significant for virus envelopment. J. Gen. Virol. 2000;81:2397–2405. PubMed

Yamauchi Y., Shiba C., Goshima F., Nawa A., Murata T., Nishiyama Y. Herpes simplex virus type 2 ul34 protein requires ul31 protein for its relocation to the internal nuclear membrane in transfected cells. J. Gen. Virol. 2001;82:1423–1428. PubMed

Klupp B.G., Granzow H., Mettenleiter T.C. Primary envelopment of pseudorabies virus at the nuclear membrane requires the ul34 gene product. J. Virol. 2000;74:10063–10073. PubMed PMC

Fuchs W., Klupp B.G., Granzow H., Osterrieder N., Mettenleiter T.C. The interacting ul31 and ul34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J. Virol. 2002;76:364–378. PubMed PMC

Camozzi D., Pignatelli S., Valvo C., Lattanzi G., Capanni C., Dal Monte P., Landini M.P. Remodelling of the nuclear lamina during human cytomegalovirus infection: Role of the viral proteins pul50 and pul53. J. Gen. Virol. 2008;89:731–740. PubMed

Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U.H. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science. 2002;297:854–857. PubMed

Lake C.M., Hutt-Fletcher L.M. The epstein-barr virus bfrf1 and bflf2 proteins interact and coexpression alters their cellular localization. Virology. 2004;320:99–106. PubMed

Farina A., Feederle R., Raffa S., Gonnella R., Santarelli R., Frati L., Angeloni A., Torrisi M.R., Faggioni A., Delecluse H.J. Bfrf1 of epstein-barr virus is essential for efficient primary viral envelopment and egress. J. Virol. 2005;79:3703–3712. PubMed PMC

Gonnella R., Farina A., Santarelli R., Raffa S., Feederle R., Bei R., Granato M., Modesti A., Frati L., Delecluse H.J., et al. Characterization and intracellular localization of the epstein-barr virus protein bflf2: Interactions with bfrf1 and with the nuclear lamina. J. Virol. 2005;79:3713–3727. PubMed PMC

Milbradt J., Auerochs S., Marschall M. Cytomegaloviral proteins pul50 and pul53 are associated with the nuclear lamina and interact with cellular protein kinase c. J. Gen. Virol. 2007;88:2642–2650. PubMed

Milbradt J., Auerochs S., Sticht H., Marschall M. Cytomegaloviral proteins that associate with the nuclear lamina: Components of a postulated nuclear egress complex. J. Gen. Virol. 2009;90:579–590. PubMed

Marschall M., Marzi A., aus dem Siepen P., Jochmann R., Kalmer M., Auerochs S., Lischka P., Leis M., Stamminger T. Cellular p32 recruits cytomegalovirus kinase pul97 to redistribute the nuclear lamina. J. Biol. Chem. 2005;280:33357–33367. PubMed

Hamirally S., Kamil J.P., Ndassa-Colday Y.M., Lin A.J., Jahng W.J., Baek M.C., Noton S., Silva L.A., Simpson-Holley M., Knipe D.M., et al. Viral mimicry of cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 2009;5:e1000275. PubMed PMC

Prichard M.N. Function of human cytomegalovirus ul97 kinase in viral infection and its inhibition by maribavir. Rev. Med. Virol. 2009;19:215–229. PubMed PMC

Milbradt J., Webel R., Auerochs S., Sticht H., Marschall M. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J. Biol. Chem. 2010;285:13979–13989. PubMed PMC

Lee C.P., Huang Y.H., Lin S.F., Chang Y., Chang Y.H., Takada K., Chen M.R. Epstein-barr virus bglf4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J. Virol. 2008;82:11913–11926. PubMed PMC

Miller M.S., Furlong W.E., Pennell L., Geadah M., Hertel L. Rascal is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection. J. Virol. 2010;84:6483–6496. PubMed PMC

Klupp B.G., Granzow H., Mettenleiter T.C. Effect of the pseudorabies virus us3 protein on nuclear membrane localization of the ul34 protein and virus egress from the nucleus. J. Gen. Virol. 2001;82:2363–2371. PubMed

Morimoto T., Arii J., Tanaka M., Sata T., Akashi H., Yamada M., Nishiyama Y., Uema M., Kawaguchi Y. Differences in the regulatory and functional effects of the us3 protein kinase activities of herpes simplex virus 1 and 2. J. Virol. 2009;83:11624–11634. PubMed PMC

de Noronha C.M., Sherman M.P., Lin H.W., Cavrois M.V., Moir R.D., Goldman R.D., Greene W.C. Dynamic disruptions in nuclear envelope architecture and integrity induced by hiv-1 vpr. Science. 2001;294:1105–1108. PubMed

Segura-Totten M., Wilson K.L. Hiv--breaking the rules for nuclear entry. Science. 2001;294:1016–1017. PubMed

Pelkmans L., Kartenbeck J., Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the er. Nat. Cell Biol. 2001;3:473–483. PubMed

Gilbert J.M., Benjamin T.L. Early steps of polyomavirus entry into cells. J. Virol. 2000;74:8582–8588. PubMed PMC

Gilbert J.M., Goldberg I.G., Benjamin T.L. Cell penetration and trafficking of polyomavirus. J. Virol. 2003;77:2615–2622. PubMed PMC

Richterova Z., Liebl D., Horak M., Palkova Z., Stokrova J., Hozak P., Korb J., Forstova J. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial vp1 pseudocapsids toward cell nuclei. J. Virol. 2001;75:10880–10891. PubMed PMC

Mannova P., Forstova J. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of copi vesicle transport. J. Virol. 2003;77:1672–1681. PubMed PMC

Liebl D., Difato F., Hornikova L., Mannova P., Stokrova J., Forstova J. Mouse polyomavirus enters early endosomes, requires their acidic ph for productive infection, and meets transferrin cargo in rab11-positive endosomes. J. Virol. 2006;80:4610–4622. PubMed PMC

Qian M., Cai D., Verhey K.J., Tsai B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog. 2009;5:e1000465. PubMed PMC

Maul G.G., Rovera G., Vorbrodt A., Abramczuk J. Membrane fusion as a mechanism of simian virus 40 entry into different cellular compartments. J. Virol. 1978;28:936–944. PubMed PMC

Mackay R.L., Consigli R.A. Early events in polyoma virus infection: Attachment, penetration, and nuclear entry. J. Virol. 1976;19:620–636. PubMed PMC

Nakanishi A., Shum D., Morioka H., Otsuka E., Kasamatsu H. Interaction of the vp3 nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40. J. Virol. 2002;76:9368–9377. PubMed PMC

Gilbert J., Ou W., Silver J., Benjamin T. Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J. Virol. 2006;80:10868–10870. PubMed PMC

Lilley B.N., Gilbert J.M., Ploegh H.L., Benjamin T.L. Murine polyomavirus requires the endoplasmic reticulum protein derlin-2 to initiate infection. J. Virol. 2006;80:8739–8744. PubMed PMC

Schelhaas M., Malmstrom J., Pelkmans L., Haugstetter J., Ellgaard L., Grunewald K., Helenius A. Simian virus 40 depends on er protein folding and quality control factors for entry into host cells. Cell. 2007;131:516–529. PubMed

Kuksin D., Norkin L.C. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm. J. Virol. 2012;86:1555–1562. PubMed PMC

Butin-Israeli V., Ben-Nun-Shaul O., Kopatz I., Adam S.A., Shimi T., Goldman R.D., Oppenheim A. Simian virus 40 induces lamin a/c fluctuations and nuclear envelope deformation during cell entry. Nucleus. 2011;2 [Epub ahead of print] PubMed PMC

Daniels R., Rusan N.M., Wadsworth P., Hebert D.N. Sv40 vp2 and vp3 insertion into er membranes is controlled by the capsid protein vp1: Implications for DNA translocation out of the er. Mol. Cell. 2006;24:955–966. PubMed

Rainey-Barger E.K., Magnuson B., Tsai B. A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J. Virol. 2007;81:12996–13004. PubMed PMC

Huerfano S., Zila V., Boura E., Spanielova H., Stokrova J., Forstova J. Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J. 2010;277:1270–1283. PubMed

Cohen S., Behzad A.R., Carroll J.B., Pante N. Parvoviral nuclear import: Bypassing the host nuclear-transport machinery. J. Gen. Virol. 2006;87:3209–3213. PubMed

Cohen S., Marr A.K., Garcin P., Pante N. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J. Virol. 2011;85:4863–4874. PubMed PMC

Hansen J., Qing K., Srivastava A. Infection of purified nuclei by adeno-associated virus 2. Mol. Ther. 2001;4:289–296. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The actin family protein ARP6 contributes to the structure and the function of the nucleolus

. 2015 Aug 21 ; 464 (2) : 554-60. [epub] 20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace