Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25100820
PubMed Central
PMC4187743
DOI
10.1128/jcm.01292-14
PII: JCM.01292-14
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Genes, Bacterial MeSH
- Drug Resistance, Bacterial * MeSH
- DNA, Bacterial chemistry genetics MeSH
- Adult MeSH
- Genetic Variation * MeSH
- Genotype MeSH
- Humans MeSH
- Macrolides pharmacology MeSH
- Molecular Typing * MeSH
- Prevalence MeSH
- RNA, Ribosomal, 23S genetics MeSH
- Syphilis epidemiology microbiology MeSH
- Treponema pallidum classification drug effects genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- DNA, Bacterial MeSH
- Macrolides MeSH
- RNA, Ribosomal, 23S MeSH
From January 2011 to December 2013, a total of 262 samples, from 188 patients suspected of having syphilis were tested for the presence of treponemal DNA by PCR amplification of five chromosomal loci, including the polA (TP0105), tmpC (TP0319), TP0136, TP0548, and 23S rRNA genes. Altogether, 146 samples from 103 patients were PCR positive for treponemal DNA. A set of 81 samples from 62 PCR-positive patients were typeable, and among them, nine different genotypes were identified. Compared to a previous study in the Czech Republic during 2004 to 2010, the number of genotypes detected among syphilis patients in a particular year increased to six in both 2012 and 2013, although they were not the same six. The proportion of macrolide-resistant clinical isolates in this 3-year study was 66.7%.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Dermatology 1st Faculty of Medicine Charles University Prague Prague Czech Republic
Department of Dermatovenereology St Anne's Faculty Hospital Brno Brno Czech Republic
See more in PubMed
Hay PE, Clarke JR, Strugnell RA, Taylor-Robinson D, Goldmeier D. 1990. Use of the polymerase chain reaction to detect DNA sequences specific to pathogenic treponemes in according to the manufacturer fluid. FEMS Microbiol. Lett. 56:233–238 PubMed
Pillay A, Liu H, Ebrahim S, Chen CY, Lai W, Fehler G, Ballard RC, Steiner B, Sturm AW, Morse SA. 2002. Molecular typing of Treponema pallidum in South Africa: cross-sectional studies. J. Clin. Microbiol. 40:256–258. 10.1128/JCM.40.1.256-258.2002 PubMed DOI PMC
Katz KA, Pillay A, Ahrens K, Kohn RP, Hermanstyne K, Bernstein KT, Ballard RC, Klausner JD. 2010. Molecular epidemiology of syphilis—San Francisco, 2004-2007. Sex. Transm. Dis. 37:660–663. 10.1097/OLQ.0b013e3181e1a77a PubMed DOI
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, Rompalo A, Klausner JD, Yin Y, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA. 2010. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J. Infect. Dis. 202:1380–1388. 10.1086/656533 PubMed DOI PMC
Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, Strnadel R, Kuklová I, Woznicová V, Zákoucká H, Šmajs D. 2012. Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm. Venereol. 92:669–674. 10.2340/00015555-1335 PubMed DOI
Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, Engelman J, Mitchell SJ, Rompalo AM, Marra CM, Klausner JD. 2004. Macrolide resistance in Treponema pallidum in the United States and Ireland. N. Engl. J. Med. 351:154–158. 10.1056/NEJMoa040216 PubMed DOI
Mikalová L, Pospíšilová P, Woznicová V, Kuklová I, Zákoucká H, Šmajs D. 2013. Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient. BMC Microbiol. 13:178. 10.1186/1471-2180-13-178 PubMed DOI PMC
Flasarová M, Šmajs D, Matĕjková P, Woznicová V, Heroldová-Dvořáková M, Votava M. 2006. Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical specimens. Epidemiol. Mikrobiol. Immunol. 55:105–111 (In Czech.) PubMed
Stamm LV, Bergen HL. 2000. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob. Agents Chemother. 44:806–807. 10.1128/AAC.44.3.806-807.2000 PubMed DOI PMC
Matĕjková P, Flasarová M, Zákoucká H, Borek M, Kremenová S, Arenberger P, Woznicová V, Weinstock GM, Šmajs D. 2009. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J. Med. Microbiol. 58:832–836. 10.1099/jmm.0.007542-0 PubMed DOI
Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R. 1994. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat. Genet. 7:195–200. 10.1038/ng0694-195 PubMed DOI
Bruisten SM. 2012. Protocols for detection and typing of Treponema pallidum using PCR methods. Methods Mol. Biol. 903:141–167. 10.1007/978-1-61779-937-2_9 PubMed DOI
Gayet-Ageron A, Ninet B, Toutous-Trellu L, Lautenschlager S, Furrer H, Piguet V, Schrenzel J, Hirschel B. 2009. Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex. Transm. Infect. 85:264–269. 10.1136/sti.2008.034314 PubMed DOI
Gayet-Ageron A, Lautenschlager S, Ninet B, Perneger TV, Combescure C. 2013. Sensitivity, specificity and likelihood ratios of PCR in the diagnosis of syphilis: a systematic review and meta-analysis. Sex. Transm. Infect. 89:251–256. 10.1136/sextrans-2012-050622 PubMed DOI
Nechvátal L, Pĕtrošová H, Grillová L, Pospíšilová P, Mikalová L, Strnadel R, Kuklová I, Kojanová M, Kneidlová M, Vaňousová D, Procházka P, Zákoucká H, Krchňáková A, Šmajs D. 2014. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains. Int. J. Med. Microbiol. 14:43–45. 10.1016/j.ijmm.2014.04.007 PubMed DOI
Grange PA, Allix-Beguec C, Chanal J, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Lassau F, Janier M, Dupin N. 2013. Molecular subtyping of Treponema pallidum in Paris, France. Sex. Transm. Dis. 40:641–644. 10.1097/OLQ.0000000000000006 PubMed DOI
Tipple C, McClure MO, Taylor GP. 2011. High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex. Transm. Infect. 87:486–488. 10.1136/sextrans-2011-050082 PubMed DOI
Dai T, Li K, Lu H, Gu X, Wang Q, Zhou P. 2012. Molecular typing of Treponema pallidum: a 5-year surveillance in Shanghai, China. J. Clin. Microbiol. 50:3674–3677. 10.1128/JCM.01195-12 PubMed DOI PMC
Grimes M, Sahi SK, Godornes BC, Tantalo LC, Roberts N, Bostick D, Marra CM, Lukehart SA. 2012. Two mutations associated with macrolide resistance in Treponema pallidum: increasing prevalence and correlation with molecular strain type in Seattle, Washington. Sex. Transm. Dis. 39:954–958. 10.1097/OLQ.0b013e31826ae7a8 PubMed DOI PMC
Peng RR, Yin YP, Wei WH, Wang HC, Zhu BY, Liu QZ, Zheng HP, Zhang JP, Huang SJ, Chen XS. 2012. Molecular typing of Treponema pallidum causing early syphilis in China: a cross-sectional study. Sex. Transm. Dis. 39:42–45. 10.1097/OLQ.0b013e318232697d PubMed DOI
Wu H, Chang SY, Lee NY, Huang WC, Wu BR, Yang CJ, Liang SH, Lee CH, Ko WC, Lin HH, Chen YH, Liu WC, Su YC, Hsieh CY, Wu PY, Hung CC. 2012. Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. J. Clin. Microbiol. 50:2299–2304. 10.1128/JCM.00341-12 PubMed DOI PMC
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matĕjková P, Šmajs D, Weinstock GM, Noriss SJ, Palzkill T. 2008. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect. Immun. 76:1848–1857. 10.1128/IAI.01424-07 PubMed DOI PMC
Woznicová V, Šmajs D, Wechsler D, Matĕjková P, Flasarová M. 2007. Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and according to the manufacturer fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy. J. Clin. Microbiol. 45:659–661. 10.1128/JCM.02209-06 PubMed DOI PMC
Chen X-S, Yin Y-P, Wei W-H, Wang H-C, Peng R-R, Zheng HP, Zhang JP, Zhu BY, Liu QZ, Huang SJ. 2013. High prevalence of azithromycin resistance to Treponema pallidum in geographically different areas in China. Clin. Microbiol. Infect. 19:975–979. 10.1111/1469-0691.12098 PubMed DOI
Muldoon EG, Walsh A, Crowley B, Mulcahy F. 2012. Treponema pallidum azithromycin resistance in Dublin, Ireland. Sex. Transm. Dis. 39:784–786. 10.1097/OLQ.0b013e318269995f PubMed DOI
A2058G Prevalence Workgroup. 2012. Prevalence of the 23S rRNA A2058G point mutation and molecular subtypes in Treponema pallidum in the United States, 2007 to 2009. Sex. Transm. Dis. 39:794–798 PubMed
Marra CM, Colina AP, Godornes C, Tantalo LC, Puray M, Centurion-Lara A, Lukehart SA. 2006. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum. J. Infect. Dis. 194:1771–1773. 10.1086/509512 PubMed DOI
Mitchell SJ, Engelman J, Kent CK, Lukehart SA, Godornes C, Klausner JD. 2006. Azithromycin-resistant syphilis infection: San Francisco, California, 2000-2004. Clin. Infect. Dis. 42:337–345. 10.1086/498899 PubMed DOI
Van Damme K, Behets F, Ravelomanana N, Godornes C, Khan M, Randrianasolo B, Rabenja NL, Lukehart SA, Cohen M, Hook E. 2009. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. Sex. Transm. Dis. 36:775–776. 10.1097/OLQ.0b013e3181bd11dd PubMed DOI PMC
Stamm LV, Stapleton JT, Bassford PJ. 1988. In vitro assay to demonstrate high-level erythromycin resistance of a clinical isolate of Treponema pallidum. Antimicrob. Agents Chemother. 32:164–169. 10.1128/AAC.32.2.164 PubMed DOI PMC
Stamm LV, Parrish EA. 1990. In-vitro activity of azithromycin and CP-63,956 against Treponema pallidum. J. Antimicrob. Chemother. 25:11–14. 10.1093/jac/25.suppl_A.11 PubMed DOI
Woznicová V, Matĕjková P, Flasarová M, Zákoucká H, Valisová Z, Šmajs D, Dastychová E. 2010. Clarithromycin treatment failure due to macrolide resistance in Treponema pallidum in a patient with primary syphilis. Acta Derm. Venereol. 90:206–207. 10.2340/00015555-0774 PubMed DOI
Martin IE, Gu W, Yang Y, Tsang RS. 2009. Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin. Infect. Dis. 49:515–521. 10.1086/600878 PubMed DOI
Alarcón T, Domingo D, Prieto N, Lópéz-Brea B. 2000. Clarithromycin resistance stability in Helicobacter pylori: influence of the MIC and type of mutation in the 23S rRNA. J. Antimicrob. Chemother. 46:613–616. 10.1093/jac/46.4.613 PubMed DOI
Binet R, Bowlin AK, Maurelli AT, Rank RG. 2010. Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. Antimicrob. Agents Chemother. 54:1094–1101. 10.1128/AAC.01321-09 PubMed DOI PMC
Stamm LV. 2010. Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob. Agents Chemother. 54:583–589. 10.1128/AAC.01095-09 PubMed DOI PMC
Pĕtrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, Sodergren E, Weinstock GM, Šmajs D. 2013. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One 8(9):74319. 10.1371/journal.pone.0074319 PubMed DOI PMC