In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25692135
PubMed Central
PMC4321674
DOI
10.1155/2015/349534
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Benzamides chemical synthesis chemistry pharmacology MeSH
- Methicillin-Resistant Staphylococcus aureus growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Benzamides MeSH
A series of nine substituted 2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides was assessed as prospective bactericidal agents against three clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213 as the reference and quality control strain. The minimum bactericidal concentration was determined by subculturing aliquots from MIC determination onto substance-free agar plates. The bactericidal kinetics of compounds 5-chloro-2-hydroxy-N-[(2S)-3-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (1f), N-{(2S)-1-[(4-bromophenyl)amino]-3-methyl-1-oxobutan-2-yl}-4-chloro-2-hydroxybenzamide (1g), and 4-chloro-N-{(2S)-1-[(3,4-dichlorophenyl)amino]-3-methyl-1-oxobutan-2-yl}-2-hydroxybenzamide (1h) was established by time-kill assay with a final concentration of the compound equal to 1x, 2x, and 4x MIC; aliquots were removed at 0, 4, 6, 8, and 24 h time points. The most potent bactericidal agent was compound 1f exhibiting remarkable rapid concentration-dependent bactericidal effect even at 2x MIC at 4, 6, and 8 h (with a reduction in bacterial count ranging from 3.08 to 3.75 log10 CFU/mL) and at 4x MIC at 4, 6, 8, and 24 h (5.30 log10 CFU/mL reduction in bacterial count) after incubation against MRSA 63718. Reliable bactericidal effect against other strains was maintained at 4x MIC at 24 h.
See more in PubMed
Moellering R. C., Jr., Graybill J. R., McGowan J. E., Jr., Corey L. Antimicrobial resistance prevention initiative—an update: proccedings of an expert panel on resistance. The American Journal of Medicine. 2007;120(7):S4–S25. doi: 10.1016/j.amjmed.2007.04.001. PubMed DOI
Stryjewski M. E., Chambers H. F. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus . Clinical Infectious Diseases. 2008;46(supplement 5):S368–S377. doi: 10.1086/533593. PubMed DOI
Kaku N., Yanagihara K., Morinaga Y., et al. Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia. Journal of Infection and Chemotherapy. 2014;20(6):350–355. doi: 10.1016/j.jiac.2013.12.009. PubMed DOI
European Centre for Disease Prevention and Control. Proportion of methicillin resistant Staphylococcus aureus (MRSA) isolates in participating countries in 2012. 2014, http://www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/map_reports.aspx.
Sakoulas G., Moise-Broder P. A., Schentag J., Forrest A., Moellering R. C., Jr., Eliopoulos G. M. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Journal of Clinical Microbiology. 2004;42(6):2398–2402. doi: 10.1128/JCM.42.6.2398-2402.2004. PubMed DOI PMC
Tang H.-J., Chen C.-C., Ko W.-C., Yu W.-L., Chiang S.-R., Chuang Y.-C. In vitro efficacy of antimicrobial agents against high-inoculum or biofilm-embedded meticillin-resistant Staphylococcus aureus with vancomycin minimal inhibitory concentrations equal to 2 μg/mL (VA2-MRSA) International Journal of Antimicrobial Agents. 2011;38(1):46–51. doi: 10.1016/j.ijantimicag.2011.02.013. PubMed DOI
Sievert D. M., Rudrik J. T., Patel J. B., McDonald L. C., Wilkins M. J., Hageman J. C. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clinical Infectious Diseases. 2008;46(5):668–674. doi: 10.1086/527392. PubMed DOI
Wilcox M. H. MRSA new treatments on the horizon: current status. Injury. 2011;42(5):S42–S44. doi: 10.1016/S0020-1383(11)70132-2. PubMed DOI
Moise P. A., Sakoulas G., Forrest A., Schentag J. J. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrobial Agents and Chemotherapy. 2007;51(7):2582–2586. doi: 10.1128/AAC.00939-06. PubMed DOI PMC
Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—a review. Current Pharmaceutical Design. 2011;17(32):3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Bartram D. J., Leathwick D. M., Taylor M. A., Geurden T., Maeder S. J. The role of combination anthelmintic formulations in the sustainable control of sheep nematodes. Veterinary Parasitology. 2012;186(3-4):151–158. doi: 10.1016/j.vetpar.2011.11.030. PubMed DOI
Cheng T.-J. R., Wu Y.-T., Yang S.-T., et al. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorganic and Medicinal Chemistry. 2010;18(24):8512–8529. doi: 10.1016/j.bmc.2010.10.036. PubMed DOI
Pauk K., Zadrazilova I., Imramovsky A., et al. New derivatives of salicylamides: preparation and antimicrobial activity against various bacterial species. Bioorganic and Medicinal Chemistry. 2013;21(21):6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Vinšova J., Kozic J., Krátky M., et al. Salicylanilide diethyl phosphates: synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry. 2014;22(2):728–737. doi: 10.1016/j.bmc.2013.12.016. PubMed DOI
Liu Y., Donner P. L., Pratt J. K., et al. Identification of halosalicylamide derivatives as a novel class of allosteric inhibitors of HCV NS5B polymerase. Bioorganic and Medicinal Chemistry Letters. 2008;18(11):3173–3177. doi: 10.1016/j.bmcl.2008.04.068. PubMed DOI
Wu C. J., Jan J. T., Chen C. M., et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrobial Agents and Chemotherapy. 2004;48(7):2693–2696. doi: 10.1128/AAC.48.7.2693-2696.2004. PubMed DOI PMC
Hlasta D. J., Demers J. P., Foleno B. D., et al. Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: pharmacophore identification based on the screening hit closantel. Bioorganic and Medicinal Chemistry Letters. 1998;8(14):1923–1928. doi: 10.1016/S0960-894X(98)00326-6. PubMed DOI
Brown M. E., Fitzner J. N., Stevens T., Chin W., Wright C. D., Boyce J. P. Salicylanilides: selective inhibitors of interleukin-12p40 production. Bioorganic and Medicinal Chemistry. 2008;16(18):8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI
Chenna B. C., Shinkre B. A., King J. R., Lucius A. L., Narayana S. V. L., Velu S. E. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus Sortase A. Bioorganic and Medicinal Chemistry Letters. 2008;18(1):380–385. doi: 10.1016/j.bmcl.2007.10.051. PubMed DOI
Triola G., Wetzel S., Ellinger B., et al. ATP competitive inhibitors of d-alanine-d-alanine ligase based on protein kinase inhibitor scaffolds. Bioorganic and Medicinal Chemistry. 2009;17(3):1079–1087. doi: 10.1016/j.bmc.2008.02.046. PubMed DOI
Kratky M., Vinsova J., Novotna E., et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92(5):434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI
Imramovsky A., Ferriz J. M., Pauk K., Kratky M., Vinsova J. Synthetic route for the preparation of 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides. Journal of Combinatorial Chemistry. 2010;12(4):414–416. doi: 10.1021/cc900168s. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI document M100-S16, CLSI, Wayne, Pa, USA, 2006.
Clinical and Laboratory Standards Institute (CLSI) CLSI Document. M100-S24. Wayne, Pa, USA: CLSI; 2014. Performance standards for antimicrobial susceptibility testing: twenty-fourth informational supplement.
European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 4.0. 2014, http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_4.0.pdf.
Clinical and Laboratory Standards Institute (CLSI) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M07-A9 PK, CLSI, Wayne, Pa, USA, 2012.
Nübel U., Dordel J., Kurt K., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus . PLoS Pathogens. 2010;6(4) doi: 10.1371/journal.ppat.1000855.e1000855 PubMed DOI PMC
Boşgelmez-Tınaz G., Ulusoy S., Arıdoğan B., Coşkun-Arı F. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. European Journal of Clinical Microbiology and Infectious Diseases. 2006;25(6):410–412. doi: 10.1007/s10096-006-0153-8. PubMed DOI
Martineau F., Picard F. J., Roy P. H., Ouellette M., Bergeron M. G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus . Journal of Clinical Microbiology. 1998;36(3):618–623. PubMed PMC
Schwalbe R., Steele-Moore L., Goodwin A. C. Antimicrobial Susceptibility Testing Protocols. Boca Raton, Fla, USA: CRC Press; 2007.
Hilliard J. J., Goldschmidt R. M., Licata L., Baum E. Z., Bush K. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrobial Agents and Chemotherapy. 1999;43(7):1693–1699. PubMed PMC
Cha J. O., Park Y. K., Lee Y. S., Chung G. T. In vitro biofilm formation and bactericidal activities of methicillin-resistant Staphylococcus aureus clones prevalent in Korea. Diagnostic Microbiology and Infectious Disease. 2011;70(1):112–118. doi: 10.1016/j.diagmicrobio.2010.11.018. PubMed DOI
Imramovsky A., Stepankova S., Vanco J., et al. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17(9):10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC
Lullmann H., Mohr K., Wehling M. Pharmacology and Toxicology. Prague, Czech Republic: Grada; 2004 (Czech)
Basch H., Gadebusch H. H. In vitro antimicrobial activity of dimethylsulfoxide. Applied Microbiology. 1968;16(12):1953–1954. PubMed PMC
Lin G., Pankuch G. A., Appelbaum P. C., Kosowska-Shick K. Activity of telavancin compared to other agents against coagulase-negative staphylococci with different resistotypes by time kill. Diagnostic Microbiology and Infectious Disease. 2012;73(3):287–289. doi: 10.1016/j.diagmicrobio.2012.04.003. PubMed DOI
National Committee for Clinical Laboratory Standards (NCCLS) Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A, NCCLS, Wayne, Pa, USA, 1999.
Gould I. M. MRSA bacteraemia. International Journal of Antimicrobial Agents. 2007;30(1):66–70. doi: 10.1016/j.ijantimicag.2007.06.023. PubMed DOI
Kaye D. FDA lowers vancomycin breakpoints for Staphylococcus aureus . Clinical Infectious Diseases. 2008;47(3):3–4. doi: 10.1086/590061. DOI
Rybak M. J., Lomaestro B. M., Rotschafer J. C. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases. 2009;49(3):325–327. doi: 10.1086/600877. PubMed DOI
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity
Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides