• This record comes from PubMed

In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA

. 2015 ; 2015 () : 349534. [epub] 20150115

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

A series of nine substituted 2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides was assessed as prospective bactericidal agents against three clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213 as the reference and quality control strain. The minimum bactericidal concentration was determined by subculturing aliquots from MIC determination onto substance-free agar plates. The bactericidal kinetics of compounds 5-chloro-2-hydroxy-N-[(2S)-3-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (1f), N-{(2S)-1-[(4-bromophenyl)amino]-3-methyl-1-oxobutan-2-yl}-4-chloro-2-hydroxybenzamide (1g), and 4-chloro-N-{(2S)-1-[(3,4-dichlorophenyl)amino]-3-methyl-1-oxobutan-2-yl}-2-hydroxybenzamide (1h) was established by time-kill assay with a final concentration of the compound equal to 1x, 2x, and 4x MIC; aliquots were removed at 0, 4, 6, 8, and 24 h time points. The most potent bactericidal agent was compound 1f exhibiting remarkable rapid concentration-dependent bactericidal effect even at 2x MIC at 4, 6, and 8 h (with a reduction in bacterial count ranging from 3.08 to 3.75 log10 CFU/mL) and at 4x MIC at 4, 6, 8, and 24 h (5.30 log10 CFU/mL reduction in bacterial count) after incubation against MRSA 63718. Reliable bactericidal effect against other strains was maintained at 4x MIC at 24 h.

See more in PubMed

Moellering R. C., Jr., Graybill J. R., McGowan J. E., Jr., Corey L. Antimicrobial resistance prevention initiative—an update: proccedings of an expert panel on resistance. The American Journal of Medicine. 2007;120(7):S4–S25. doi: 10.1016/j.amjmed.2007.04.001. PubMed DOI

Stryjewski M. E., Chambers H. F. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus . Clinical Infectious Diseases. 2008;46(supplement 5):S368–S377. doi: 10.1086/533593. PubMed DOI

Kaku N., Yanagihara K., Morinaga Y., et al. Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia. Journal of Infection and Chemotherapy. 2014;20(6):350–355. doi: 10.1016/j.jiac.2013.12.009. PubMed DOI

European Centre for Disease Prevention and Control. Proportion of methicillin resistant Staphylococcus aureus (MRSA) isolates in participating countries in 2012. 2014, http://www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/map_reports.aspx.

Sakoulas G., Moise-Broder P. A., Schentag J., Forrest A., Moellering R. C., Jr., Eliopoulos G. M. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Journal of Clinical Microbiology. 2004;42(6):2398–2402. doi: 10.1128/JCM.42.6.2398-2402.2004. PubMed DOI PMC

Tang H.-J., Chen C.-C., Ko W.-C., Yu W.-L., Chiang S.-R., Chuang Y.-C. In vitro efficacy of antimicrobial agents against high-inoculum or biofilm-embedded meticillin-resistant Staphylococcus aureus with vancomycin minimal inhibitory concentrations equal to 2 μg/mL (VA2-MRSA) International Journal of Antimicrobial Agents. 2011;38(1):46–51. doi: 10.1016/j.ijantimicag.2011.02.013. PubMed DOI

Sievert D. M., Rudrik J. T., Patel J. B., McDonald L. C., Wilkins M. J., Hageman J. C. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clinical Infectious Diseases. 2008;46(5):668–674. doi: 10.1086/527392. PubMed DOI

Wilcox M. H. MRSA new treatments on the horizon: current status. Injury. 2011;42(5):S42–S44. doi: 10.1016/S0020-1383(11)70132-2. PubMed DOI

Moise P. A., Sakoulas G., Forrest A., Schentag J. J. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrobial Agents and Chemotherapy. 2007;51(7):2582–2586. doi: 10.1128/AAC.00939-06. PubMed DOI PMC

Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—a review. Current Pharmaceutical Design. 2011;17(32):3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Bartram D. J., Leathwick D. M., Taylor M. A., Geurden T., Maeder S. J. The role of combination anthelmintic formulations in the sustainable control of sheep nematodes. Veterinary Parasitology. 2012;186(3-4):151–158. doi: 10.1016/j.vetpar.2011.11.030. PubMed DOI

Cheng T.-J. R., Wu Y.-T., Yang S.-T., et al. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorganic and Medicinal Chemistry. 2010;18(24):8512–8529. doi: 10.1016/j.bmc.2010.10.036. PubMed DOI

Pauk K., Zadrazilova I., Imramovsky A., et al. New derivatives of salicylamides: preparation and antimicrobial activity against various bacterial species. Bioorganic and Medicinal Chemistry. 2013;21(21):6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Vinšova J., Kozic J., Krátky M., et al. Salicylanilide diethyl phosphates: synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry. 2014;22(2):728–737. doi: 10.1016/j.bmc.2013.12.016. PubMed DOI

Liu Y., Donner P. L., Pratt J. K., et al. Identification of halosalicylamide derivatives as a novel class of allosteric inhibitors of HCV NS5B polymerase. Bioorganic and Medicinal Chemistry Letters. 2008;18(11):3173–3177. doi: 10.1016/j.bmcl.2008.04.068. PubMed DOI

Wu C. J., Jan J. T., Chen C. M., et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrobial Agents and Chemotherapy. 2004;48(7):2693–2696. doi: 10.1128/AAC.48.7.2693-2696.2004. PubMed DOI PMC

Hlasta D. J., Demers J. P., Foleno B. D., et al. Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: pharmacophore identification based on the screening hit closantel. Bioorganic and Medicinal Chemistry Letters. 1998;8(14):1923–1928. doi: 10.1016/S0960-894X(98)00326-6. PubMed DOI

Brown M. E., Fitzner J. N., Stevens T., Chin W., Wright C. D., Boyce J. P. Salicylanilides: selective inhibitors of interleukin-12p40 production. Bioorganic and Medicinal Chemistry. 2008;16(18):8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI

Chenna B. C., Shinkre B. A., King J. R., Lucius A. L., Narayana S. V. L., Velu S. E. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus Sortase A. Bioorganic and Medicinal Chemistry Letters. 2008;18(1):380–385. doi: 10.1016/j.bmcl.2007.10.051. PubMed DOI

Triola G., Wetzel S., Ellinger B., et al. ATP competitive inhibitors of d-alanine-d-alanine ligase based on protein kinase inhibitor scaffolds. Bioorganic and Medicinal Chemistry. 2009;17(3):1079–1087. doi: 10.1016/j.bmc.2008.02.046. PubMed DOI

Kratky M., Vinsova J., Novotna E., et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92(5):434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI

Imramovsky A., Ferriz J. M., Pauk K., Kratky M., Vinsova J. Synthetic route for the preparation of 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides. Journal of Combinatorial Chemistry. 2010;12(4):414–416. doi: 10.1021/cc900168s. PubMed DOI

Clinical and Laboratory Standards Institute (CLSI) Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI document M100-S16, CLSI, Wayne, Pa, USA, 2006.

Clinical and Laboratory Standards Institute (CLSI) CLSI Document. M100-S24. Wayne, Pa, USA: CLSI; 2014. Performance standards for antimicrobial susceptibility testing: twenty-fourth informational supplement.

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 4.0. 2014, http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_4.0.pdf.

Clinical and Laboratory Standards Institute (CLSI) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M07-A9 PK, CLSI, Wayne, Pa, USA, 2012.

Nübel U., Dordel J., Kurt K., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus . PLoS Pathogens. 2010;6(4) doi: 10.1371/journal.ppat.1000855.e1000855 PubMed DOI PMC

Boşgelmez-Tınaz G., Ulusoy S., Arıdoğan B., Coşkun-Arı F. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. European Journal of Clinical Microbiology and Infectious Diseases. 2006;25(6):410–412. doi: 10.1007/s10096-006-0153-8. PubMed DOI

Martineau F., Picard F. J., Roy P. H., Ouellette M., Bergeron M. G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus . Journal of Clinical Microbiology. 1998;36(3):618–623. PubMed PMC

Schwalbe R., Steele-Moore L., Goodwin A. C. Antimicrobial Susceptibility Testing Protocols. Boca Raton, Fla, USA: CRC Press; 2007.

Hilliard J. J., Goldschmidt R. M., Licata L., Baum E. Z., Bush K. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrobial Agents and Chemotherapy. 1999;43(7):1693–1699. PubMed PMC

Cha J. O., Park Y. K., Lee Y. S., Chung G. T. In vitro biofilm formation and bactericidal activities of methicillin-resistant Staphylococcus aureus clones prevalent in Korea. Diagnostic Microbiology and Infectious Disease. 2011;70(1):112–118. doi: 10.1016/j.diagmicrobio.2010.11.018. PubMed DOI

Imramovsky A., Stepankova S., Vanco J., et al. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17(9):10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC

Lullmann H., Mohr K., Wehling M. Pharmacology and Toxicology. Prague, Czech Republic: Grada; 2004 (Czech)

Basch H., Gadebusch H. H. In vitro antimicrobial activity of dimethylsulfoxide. Applied Microbiology. 1968;16(12):1953–1954. PubMed PMC

Lin G., Pankuch G. A., Appelbaum P. C., Kosowska-Shick K. Activity of telavancin compared to other agents against coagulase-negative staphylococci with different resistotypes by time kill. Diagnostic Microbiology and Infectious Disease. 2012;73(3):287–289. doi: 10.1016/j.diagmicrobio.2012.04.003. PubMed DOI

National Committee for Clinical Laboratory Standards (NCCLS) Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A, NCCLS, Wayne, Pa, USA, 1999.

Gould I. M. MRSA bacteraemia. International Journal of Antimicrobial Agents. 2007;30(1):66–70. doi: 10.1016/j.ijantimicag.2007.06.023. PubMed DOI

Kaye D. FDA lowers vancomycin breakpoints for Staphylococcus aureus . Clinical Infectious Diseases. 2008;47(3):3–4. doi: 10.1086/590061. DOI

Rybak M. J., Lomaestro B. M., Rotschafer J. C. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases. 2009;49(3):325–327. doi: 10.1086/600877. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides

. 2025 ; 13 (1) : 2642. [epub] 20250208

Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides

. 2024 Aug 26 ; 29 (17) : . [epub] 20240826

Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes

. 2024 Apr 15 ; 10 (7) : e29051. [epub] 20240402

Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics

. 2022 Oct 01 ; 23 (19) : . [epub] 20221001

Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates

. 2022 Jun 05 ; 15 (6) : . [epub] 20220605

Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity

. 2016 Aug 16 ; 21 (8) : . [epub] 20160816

Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides

. 2015 May 27 ; 20 (6) : 9767-87. [epub] 20150527

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...