Telomere dynamics in the lower plant Physcomitrella patens
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Arabidopsis genetics MeSH
- Chromosomes, Plant genetics MeSH
- DNA, Plant genetics MeSH
- DNA Breaks, Double-Stranded MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Telomere Homeostasis genetics MeSH
- Homologous Recombination MeSH
- Bryopsida genetics metabolism MeSH
- Molecular Sequence Data MeSH
- Mutation MeSH
- DNA Repair * MeSH
- Plant Proteins genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Alignment MeSH
- Telomerase genetics metabolism MeSH
- Telomere genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- Plant Proteins MeSH
- Telomerase MeSH
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
See more in PubMed
Genetics. 1941 Mar;26(2):234-82 PubMed
Plant Mol Biol. 2006 Mar;60(5):633-46 PubMed
Trends Plant Sci. 2006 Jan;11(1):12-4 PubMed
Plant J. 2003 May;34(3):283-91 PubMed
Genome Biol Evol. 2012;4(3):248-64 PubMed
Biol Cell. 2009 Jul;101(7):375-92, 1 p following 392 PubMed
Mol Biosyst. 2011 Apr;7(4):1013-23 PubMed
Plant J. 2010 Oct;64(2):280-90 PubMed
Chromosome Res. 1996 Apr;4(3):207-13 PubMed
Plant Cell. 1998 Oct;10(10):1691-8 PubMed
Genome Biol Evol. 2013;5(3):468-83 PubMed
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1711-6 PubMed
BMC Genomics. 2013 Jul 23;14:498 PubMed
Development. 2010 Nov;137(21):3535-43 PubMed
EMBO J. 2002 Jun 3;21(11):2819-26 PubMed
Plant Cell Physiol. 2015 Jan;56(1):e5 PubMed
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14422-7 PubMed
FEBS Lett. 1996 Aug 12;391(3):307-9 PubMed
Plant Cell. 2010 Jun;22(6):1838-48 PubMed
DNA Repair (Amst). 2011 Jun 10;10(6):611-9 PubMed
Curr Biol. 2014 Dec 1;24(23):2786-91 PubMed
Genome Biol. 2013 May 10;14(5):R41 PubMed
Trends Plant Sci. 2009 Apr;14(4):189-93 PubMed
Cytogenet Genome Res. 2008;122(3-4):388-95 PubMed
BMC Plant Biol. 2012 Sep 17;12:167 PubMed
Plant Cell. 2002 Oct;14(10):2451-62 PubMed
Chromosome Res. 2005;13(5):469-79 PubMed
Nucleic Acids Res. 1991 Sep 11;19(17):4780 PubMed
Chromosoma. 2013 Aug;122(4):285-93 PubMed
Physiol Plant. 2013 Sep;149(1):114-26 PubMed
Mol Gen Genet. 1995 Jun 10;247(5):633-8 PubMed
Science. 2011 May 20;332(6032):960-3 PubMed
Science. 2013 Dec 20;342(6165):1241089 PubMed
Cell. 1987 Dec 24;51(6):887-98 PubMed
Proc Biol Sci. 2003 Sep 22;270(1527):1893-904 PubMed
Plant J. 2003 Sep;35(5):557-65 PubMed
Nucleic Acids Res. 2007;35(19):6490-500 PubMed
Biomed Res Int. 2013;2013:535049 PubMed
Nucleic Acids Res. 2012 Apr;40(8):3496-510 PubMed
Curr Protein Pept Sci. 2011 Mar;12(2):84-92 PubMed
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15726-31 PubMed
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4535-40 PubMed
DNA Repair (Amst). 2009 Mar 1;8(3):413-9 PubMed
J Cell Sci. 2007 Oct 15;120(Pt 20):3678-87 PubMed
Nature. 1989 Jan 26;337(6205):331-7 PubMed
Annu Rev Plant Biol. 2002;53:477-501 PubMed
Cell. 1985 Dec;43(2 Pt 1):405-13 PubMed
Science. 2009 Nov 13;326(5955):948-52 PubMed
Genes Dev. 2012 Aug 1;26(15):1703-13 PubMed
Science. 2009 Apr 10;324(5924):268-72 PubMed
Mol Gen Genet. 1998 Dec;260(5):470-4 PubMed
BMC Genomics. 2005 Mar 22;6:43 PubMed
Dokl Akad Nauk SSSR. 1971;201(6):1496-9 PubMed
Nat Protoc. 2006;1(3):1583-90 PubMed
Plant Cell. 2010 Sep;22(9):3020-33 PubMed
Plant Mol Biol. 2008 Apr;66(6):637-46 PubMed
Science. 2008 Jan 4;319(5859):64-9 PubMed
Plant Cell. 2005 Aug;17(8):2327-39 PubMed
Nucleic Acids Res. 2006;34(21):6205-14 PubMed
Chromosome Res. 2012 May;20(4):381-94 PubMed
Nat Protoc. 2006;1(1):23-9 PubMed
Am J Bot. 2006 Jun;93(6):814-23 PubMed
Characterisation of the Arabidopsis thaliana telomerase TERT-TR complex
Origin, Diversity, and Evolution of Telomere Sequences in Plants
Telomeres in Plants and Humans: Not So Different, Not So Similar
Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum
Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell
GENBANK
KM886460, KM886461, KM886462, KM886463, KM886464, KM886465, KM886466, KM886467, KM886468, KP001262, KP091459