Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
095198/Z/10/Z
Wellcome Trust - United Kingdom
BBS/E/B/000C0407
Biotechnology and Biological Sciences Research Council - United Kingdom
MR/M012328/1
Medical Research Council - United Kingdom
15965
Cancer Research UK - United Kingdom
103413/Z/13/Z
Wellcome Trust - United Kingdom
BBS/E/B/000C0409
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
C23338/A15965
Cancer Research UK - United Kingdom
BB/I007806/1
Biotechnology and Biological Sciences Research Council - United Kingdom
MR/M012328/2
Medical Research Council - United Kingdom
249816
European Research Council - International
PubMed
27555459
PubMed Central
PMC5292996
DOI
10.1016/j.jaci.2016.06.021
PII: S0091-6749(16)30623-6
Knihovny.cz E-zdroje
- Klíčová slova
- Activated phosphoinositide 3-kinase δ syndrome, PIK3CD gene, bronchiectasis, hematopoietic stem cell transplantation, immunodeficiency, p110δ-activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency, phosphoinositide 3-kinase inhibitor, phosphoinositide 3-kinase δ,
- MeSH
- analýza přežití MeSH
- antibiotická profylaxe MeSH
- dítě MeSH
- dospělí MeSH
- fosfatidylinositol-3-kinasy třídy I antagonisté a inhibitory genetika MeSH
- herpetické infekce genetika mortalita terapie MeSH
- infekce dýchací soustavy genetika mortalita terapie MeSH
- inhibitory enzymů terapeutické užití MeSH
- intravenózní imunoglobuliny terapeutické užití MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfoproliferativní nemoci genetika mortalita terapie MeSH
- mezinárodní spolupráce MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace genetika MeSH
- myši MeSH
- předškolní dítě MeSH
- průzkumy a dotazníky MeSH
- recidiva MeSH
- syndromy imunologické nedostatečnosti genetika mortalita terapie MeSH
- transplantace hematopoetických kmenových buněk MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylinositol-3-kinasy třídy I MeSH
- inhibitory enzymů MeSH
- intravenózní imunoglobuliny MeSH
- PIK3CD protein, human MeSH Prohlížeč
BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.
Barts Health NHS Trust London United Kingdom
Center for Chronic Immunodeficiency University Hospital Freiburg Freiburg Germany
Department of Clinical Biochemistry and Immunology Addenbrooke's Hospital Cambridge United Kingdom
Department of Clinical Immunology and Allergy St James's University Hospital Leeds United Kingdom
Department of Immunology Epsom and St Helier University Hospitals NHS Trust Surrey United Kingdom
Department of Immunology Great Ormond Street Hospital NHS Foundation Trust London United Kingdom
Department of Medicine University of Cambridge Cambridge United Kingdom
Department of Pathology Queen Elizabeth University Hospital Glasgow United Kingdom
Department of Pathology Western General Hospital Edinburgh United Kingdom
Department of Radiology Cambridge University Hospitals NHS Foundation Trust Cambridge United Kingdom
Department of Royal Hospital for Children Glasgow United Kingdom
Institute of Immunology University Hospital Motol Prague Czech Republic
Lymphocyte Signalling and Development Babraham Institute Cambridge United Kingdom
Papworth Hospital NHS trust Papworth Everard Cambridge United Kingdom
Raigmore Hospital Inverness United Kingdom
Regional Immunology Service The Royal Hospitals Belfast United Kingdom
Royal Aberdeen Childrens' Hospital Aberdeen United Kingdom
UCL Cancer Institute University College London London United Kingdom
University College London Institute of Immunity and Transplantation London United Kingdom
Zobrazit více v PubMed
Angulo I., Vadas O., Garçon F., Banham-Hall E., Plagnol V., Leahy T.R. Phosphoinositide 3-kinase δ gene mutation predisposes to infection and airway damage. Science. 2013;342:866–871. PubMed PMC
Lucas C.L., Kuehn H.S., Zhao F., Niemela J.E., Deenick E.K., Palendira U. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15:88–97. PubMed PMC
Vanhaesebroeck B., Welham M.J., Kotani K., Stein R., Warne P.H., Zvelebil M.J. p110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A. 1997;94:4330–4335. PubMed PMC
Chantry D., Vojtek A., Kashishian A., Holtzman D.A., Wood C., Gray P.W. p110δ, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem. 1997;272:19236–19241. PubMed
Kok K., Geering B., Vanhaesebroeck B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci. 2009;34:115–127. PubMed
Jou S.T., Chien Y.H., Yang Y.H., Wang T.C., Shyur S.D., Chou C.C. Identification of variations in the human phosphoinositide 3-kinase p110delta gene in children with primary B-cell immunodeficiency of unknown aetiology. Int J Immunogenet. 2006;33:361–369. PubMed
Kracker S., Curtis J., Ibrahim M.A.A., Sediva A., Salisbury S., Campr V. Occurrence of B-cell lymphomas in patients with Activated Phosphoinositide 3-Kinase δ syndrome (APDS) J Allergy Clin Immunol. 2014;134:233–236. PubMed PMC
Crank M.C., Grossman J.K., Moir S., Pittaluga S., Buckner C.M., Kardava L. Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J Clin Immunol. 2014;34:272–276. PubMed PMC
Hartman H.N., Niemela J., Hintermeyer M.K., Garofalo M., Stoddard J., Verbsky J.W. Gain of function mutations in PIK3CD as a cause of primary sclerosing cholangitis. J Clin Immunol. 2015;35:11–14. PubMed PMC
Hansell D.M., Bankier A.A., MacMahon H., McLoud T.C., Müller N.L., Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246:697–722. PubMed
Copley S.J., Wells A.U., Müller N.L., Rubens M.B., Hollings N.P., Cleverley J.R. Thin-section CT in obstructive pulmonary disease: discriminatory value. Radiology. 2002;223:812–819. PubMed
Comans-Bitter W.M., de Groot R., van den Beemd R., Neijens H.J., Hop W.C., Groeneveld K. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J Pediatr. 1997;130:388–393. PubMed
Piątosa B., Wolska-Kuśnierz B., Pac M., Siewiera K., Gałkowska E., Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom. 2010;78:372–381. PubMed
Morbach H., Eichhorn E.M., Liese J.G., Girschick H.J. Reference values for B cell subpopulations from infancy to adulthood. Clin Exp Immunol. 2010;162:271–279. PubMed PMC
Sheffield Protein Reference Unit. Available at: www.immqas.org.uk/pru.asp?ID=316. Accessed June 27, 2016.
Eickholt B.J., Ahmed A.I., Davies M., Papakonstanti E.A., Pearce W., Starkey M.L. Control of axonal growth and regeneration of sensory neurons by the p110delta PI 3-kinase. PLoS One. 2007;2:e869. PubMed PMC
Al-Herz W., Bousfiha A., Casanova J.L., Chatila T., Conley M.E., Cunningham-Rundles C. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162. PubMed PMC
Deau M.C., Heurtier L., Frange P., Suarez F., Bole-Feysot C., Nitschke P. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124:3923–3938. PubMed PMC
Lucas C.L., Zhang Y., Venida A., Wang Y., Hughes J., McElwee J. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med. 2014;211:2537–2547. PubMed PMC
Elkaim E., Neven B., Bruneau J., Mitsui-Sekinaka K., Stanislas A., Heurtier L. Clinical and immunological phenotype associated with activated PI3k-delta syndrome 2 (APDS2/PASLI-R1)—a cohort study. J Allergy Clin Immunol. 2016;138:210–218.e9. PubMed
Conley M.E., Dobbs A.K., Quintana A.M., Bosompem A., Wang Y.D., Coustan-Smith E. Agammaglobulinaemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med. 2012;209:463–470. PubMed PMC
Okkenhaug K., Bilancio A., Farjot G., Priddle H., Sancho S., Peskett E. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science. 2002;297:1031–1034. PubMed
CEREDIH. Gathmann B., Mahlaoui N., Gérard L., Oksenhendler E., Warnatz K., Schulze I. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–126. PubMed
Chapel H., Lucas M., Lee M., Bjorkander J., Webster D., Grimbacher B. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–286. PubMed
Thickett K.M., Kumararatne D.S., Banerjee A.K., Dudley R., Stableforth D.E. Common variable immune deficiency: respiratory manifestations, pulmonary function and high-resolution CT scan findings. QJM. 2002;95:655–662. PubMed
Quinti I., Soresina A., Spadaro G., Martino S., Donnanno S., Agostini C. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27:308–316. PubMed
Winkelstein J.A., Marino M.C., Ochs H., Fuleihan R., Scholl P.R., Geha R. The X-linked Hyper-IgM Syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore) 2003;82:373–384. PubMed
Suárez-Fueyo A., Barber D.F., Martínez-Ara J., Zea-Mendoza A.C., Carrera A.C. Phosphoinositide 3-kinase delta activity is a frequent event in systemic lupus erythematosus that confers resistance to activation-induced T cell death. J Immunol. 2011;187:2376–2385. PubMed
Patton D.T., Garden O.A., Pearce W.P., Clough L.E., Monk C.R., Leung E. Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2006;177:6598–6602. PubMed
Zhang J., Grubor V., Love C.L., Banerjee A., Richards K.L., Mieczkowski P.A. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A. 2013;110:1398–1403. PubMed PMC
Sawyer C., Sturge J., Bennett D.C., O'Hare M.J., Allen W.E., Bain J. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res. 2003;63:1667–1675. PubMed
Conte E., Fruciano M., Fagone E., Gili E., Caraci F., Iemmolo M. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class 1 isoforms. PLoS One. 2011;6:e24663. PubMed PMC
Whitehead M.A., Bombardieri M., Pitzalis C., Vanhaesebroeck B. Isoform induction of human p110d PI3K expression by TNFalpha: identification of a new and inducible PIK3CD promoter. Biochem J. 2012;443:857–867. PubMed PMC
Peng J., Awad A., Sar S., Hamze Komaiha O., Moyano R., Rayal A. Phosphoinositide 3-kinase p110δ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat Commun. 2015;6:5937. PubMed PMC
Law A.J., Wang Y., Sei Y., O'Donnell P., Piantadosi P., Papaleo F. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A. 2012;109:12165–12170. PubMed PMC
Spinelli L., Black F.M., Berg J.N., Eickholt B.J., Leslie N.R. Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet. 2015;52:128–134. PubMed PMC
Imai K., Tsujita Y., Mitsui-Sekinaka K., Mitsuiki N., Takashima T., Okano T. Hematopoietic stem cell transplantation for the patients with activated PI3K-delta syndrome. J Clin Immunol. 2014;34(suppl):S286.
Furman R.R., Sharman J.P., Coutre S.E., Cheson B.D., Pagel J.M., Hillmen P. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007. PubMed PMC
Gopal A.K., Kahl B.S., de Vos S., Wagner-Johnston N.D., Schuster S.J., Jurczak W.J. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370:1008–1018. PubMed PMC
CEREDIH. Gathmann B., Mahlaoui N., Gérard L., Oksenhendler E., Warnatz K., Schulze I. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–126. PubMed
Cunningham-Rundles C., Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92:34–48. PubMed
Quinti I., Soresina A., Spadaro G., Martino S., Donnanno S., Agostini C. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27:308–316. PubMed
Oksenhendler E., Gerard L., Fieschi C., Malphettes M., Mouillot G., Jaussaud R. Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis. 2008;46:1547–1554. PubMed
Chapel H., Lucas M., Lee M., Bjorkander J., Webster D., Grimbacher B. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–286. PubMed
Maarschalk-Ellerbroek L.J., de Jong P.A., van Montfrans J.M., Lammers J.W., Bloem A.C., Hoepelman A.I. CT screening for pulmonary pathology in common variable immunodeficiency disorders and the correlation with clinical and immunological parameters. J Clin Immunol. 2014;34:642–654. PubMed
Thickett K.M., Kumararatne D.S., Banerjee A.K., Dudley R., Stableforth D.E. Common variable immune deficiency: respiratory manifestations, pulmonary function and high-resolution CT scan findings. QJM. 2002;95:655–662. PubMed
Interim analysis: Open-label extension study of leniolisib for patients with APDS
Natural Course of Activated Phosphoinositide 3-Kinase Delta Syndrome in Childhood and Adolescence
Effective "activated PI3Kδ syndrome"-targeted therapy with the PI3Kδ inhibitor leniolisib