Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
28404790
PubMed Central
PMC5485800
DOI
10.1128/mmbr.00063-16
PII: 81/2/e00063-16
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, decomposition, ecosystem processes, forest ecology, global change, litter, nutrient cycling, soil,
- MeSH
- Bacteria metabolismus MeSH
- biomasa MeSH
- dusík metabolismus MeSH
- ekosystém * MeSH
- houby metabolismus MeSH
- klimatické změny * MeSH
- koloběh dusíku MeSH
- lesy * MeSH
- mikrobiální společenstva MeSH
- půdní mikrobiologie * MeSH
- rostliny MeSH
- sekvestrace uhlíku MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- dusík MeSH
- uhlík MeSH
The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously.
Zobrazit více v PubMed
Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manage 352:9–20. doi:10.1016/j.foreco.2015.06.014. DOI
Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, Thomas SM, Smith JR, Hintler G, Duguid MC, Amatulli G, Tuanmu MN, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams SJ, Wiser SK, Huber MO, Hengeveld GM, Nabuurs GJ, Tikhonova E, Borchardt P, Li CF, Powrie LW, Fischer M, Hemp A, Homeier J, Cho P, Vibrans AC, Umunay PM, Piao SL, Rowe CW, Ashton MS, Crane PR, Bradford MA. 2015. Mapping tree density at a global scale. Nature 525:201–205. doi:10.1038/nature14967. PubMed DOI
Lebeis SL. 2015. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol 24:82–86. doi:10.1016/j.pbi.2015.02.004. PubMed DOI
Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. doi:10.1128/MMBR.00050-14. PubMed DOI PMC
Štursová M, Bárta J, Šantrùčková H, Baldrian P. 2016. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92:fiw185. doi:10.1093/femsec/fiw185. PubMed DOI
Taggart RE, Cross AT. 2009. Global greenhouse to icehouse and back again: the origin and future of the boreal forest biome. Glob Planet Chang 65:115–121. doi:10.1016/j.gloplacha.2008.10.014. DOI
Goldblum D, Rigg LS. 2010. The deciduous forest-boreal forest ecotone. Geogr Compass 4:701–717. doi:10.1111/j.1749-8198.2010.00342.x. DOI
Baldrian P, Kolařík M, Štursová M, Kopecký J, Valaskova V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček C, Voříšková J. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258. doi:10.1038/ismej.2011.95. PubMed DOI PMC
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P. 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manage 309:4–18. doi:10.1016/j.foreco.2013.01.017. DOI
Machacova K, Back J, Vanhatalo A, Halmeenmaki E, Kolari P, Mammarella I, Pumpanen J, Acosta M, Urban O, Pihlatie M. 2016. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci Rep 6:23410. doi:10.1038/srep23410. PubMed DOI PMC
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world's forests. Science 333:988–993. doi:10.1126/science.1201609. PubMed DOI
Allison SD, Treseder KK. 2011. Climate change feedbacks to microbial decomposition in boreal soils. Fungal Ecol 4:362–374. doi:10.1016/j.funeco.2011.01.003. DOI
Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. 2015. Boreal forest health and global change. Science 349:819–822. doi:10.1126/science.aaa9092. PubMed DOI
Alkama R, Cescatti A. 2016. Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604. doi:10.1126/science.aac8083. PubMed DOI
Millar CI, Stephenson NL. 2015. Temperate forest health in an era of emerging megadisturbance. Science 349:823–826. doi:10.1126/science.aaa9933. PubMed DOI
DeAngelis KM, Pold G, Topcuoglu BD, van Diepen LT, Varney RM, Blanchard JL, Melillo J, Frey SD. 2015. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104. doi:10.3389/fmicb.2015.00104. PubMed DOI PMC
Trivedi P, Anderson IC, Singh BK. 2013. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651. doi:10.1016/j.tim.2013.09.005. PubMed DOI
Uroz S, Buée M, Deveau A, Mieszkin S, Martin F. 2016. Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol Biochem 103:471–488. doi:10.1016/j.soilbio.2016.09.006. DOI
Baldrian P. 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130. doi:10.1093/femsre/fuw040. PubMed DOI
Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Burgmann H, Ingram LJ, Hamer U, Siljanen HM, Peltoniemi K, Potthast K, Baneras L, Hartmann M, Banerjee S, Yu RQ, Nogaro G, Richter A, Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC, Lopes AR, Cao Y, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A, Lindstrom ES, Basiliko N, Nemergut DR. 2016. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214. doi:10.3389/fmicb.2016.00214. PubMed DOI PMC
Voříšková J, Brabcová V, Cajthaml T, Baldrian P. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278. doi:10.1111/nph.12481. PubMed DOI
Sterkenburg E, Bahr A, Brandstrom Durling M, Clemmensen KE, Lindahl BD. 2015. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158. doi:10.1111/nph.13426. PubMed DOI
Eichlerová I, Homolka L, Žifčáková L, Lisá L, Dobiášová P, Baldrian P. 2015. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol 13:10–22. doi:10.1016/j.funeco.2014.08.002. DOI
van den Brink J, de Vries RP. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492. doi:10.1007/s00253-011-3473-2. PubMed DOI PMC
van der Wal A, Geydan TD, Kuyper TW, de Boer W. 2013. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494. doi:10.1111/1574-6976.12001. PubMed DOI
van der Heijden MG, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi:10.1111/nph.13288. PubMed DOI
Peršoh D. 2015. Plant-associated fungal communities in the light of meta'omics. Fungal Divers 75:1–25. doi:10.1007/s13225-015-0334-9. DOI
Averill C, Turner BL, Finzi AC. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. doi:10.1038/nature12901. PubMed DOI
Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536. doi:10.1111/nph.13208. PubMed DOI
Berlemont R, Martiny AC. 2015. Genomic potential for polysaccharides deconstruction in bacteria. Appl Environ Microbiol 81:1513–1519. doi:10.1128/AEM.03718-14. PubMed DOI PMC
Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P. 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746. doi:10.1111/j.1574-6941.2012.01343.x. PubMed DOI
Eichorst SA, Kuske CR. 2012. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol 78:2316–2327. doi:10.1128/AEM.07313-11. PubMed DOI PMC
López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. 2016. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279. doi:10.1038/srep25279. PubMed DOI PMC
Brown ME, Chang MC. 2014. Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7. doi:10.1016/j.cbpa.2013.11.015. PubMed DOI
Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P. 2014. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544. doi:10.1007/s00253-014-6142-4. PubMed DOI
Reed SC, Cleveland CC, Townsend AR. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512. doi:10.1146/annurev-ecolsys-102710-145034. DOI
Uroz S, Oger P, Lepleux C, Collignon C, Frey-Klett P, Turpault MP. 2011. Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res Microbiol 162:820–831. doi:10.1016/j.resmic.2011.01.013. PubMed DOI
Walker JK, Cohen H, Higgins LM, Kennedy PG. 2014. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol 202:287–296. doi:10.1111/nph.12638. PubMed DOI
Podila GK, Sreedasyam A, Muratet MA. 2009. Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci 28:359–367. doi:10.1080/07352680903241220. DOI
Bonito G, Reynolds H, Robeson MS II, Nelson J, Hodkinson BP, Tuskan G, Schadt CW, Vilgalys R. 2014. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23:3356–3370. doi:10.1111/mec.12821. PubMed DOI
Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P. 2007. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027. doi:10.1128/AEM.00121-07. PubMed DOI PMC
Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER. 2006. Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra). Environ Microbiol 8:2224–2230. doi:10.1111/j.1462-2920.2006.01104.x. PubMed DOI
Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. doi:10.1128/AEM.00335-09. PubMed DOI PMC
Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. doi:10.1073/pnas.0507535103. PubMed DOI PMC
Urbanová M, Šnajdr J, Baldrian P. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64. doi:10.1016/j.soilbio.2015.02.011. DOI
Prescott CE, Grayston SJ. 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manage 309:19–27. doi:10.1016/j.foreco.2013.02.034. DOI
Chemidlin Prevost-Boure N, Maron P-A, Ranjard L, Nowak V, Dufrene E, Damesin C, Soudani K, Lata J-C. 2011. Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter. Appl Soil Ecol 47:14–23. doi:10.1016/j.apsoil.2010.11.006. DOI
Baldrian P, Merhautová V, Cajthaml T, Petránková M, Šnajdr J. 2010. Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biol Fertil Soils 46:717–726. doi:10.1007/s00374-010-0478-4. DOI
Baldrian P. 2014. Distribution of extracellular enzymes in soils: spatial heterogeneity and determining factors at various scales. Soil Sci Soc Am J 78:11. doi:10.2136/sssaj2013.04.0155dgs. DOI
Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199. doi:10.1016/j.soilbio.2015.01.025. DOI
Austin AT, Vivanco L, Gonzalez-Arzac A, Perez LI. 2014. There's no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314. doi:10.1111/nph.12959. PubMed DOI
Hatton PJ, Castanha C, Torn MS, Bird JA. 2015. Litter type control on soil C and N stabilization dynamics in a temperate forest. Glob Chang Biol 21:1358–1367. doi:10.1111/gcb.12786. PubMed DOI
Becher D, Bernhardt J, Fuchs S, Riedel K. 2013. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives. Proteomics 13:2895–2909. doi:10.1002/pmic.201300095. PubMed DOI
Kim M, Kim WS, Tripathi BM, Adams J. 2014. Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67:837–848. doi:10.1007/s00248-014-0380-y. PubMed DOI
Žifčáková L, Větrovský T, Howe A, Baldrian P. 2016. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–301. doi:10.1111/1462-2920.13026. PubMed DOI
López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P. 2015. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem 87:43–50. doi:10.1016/j.soilbio.2015.04.008. DOI
Purahong W, Schloter M, Pecyna MJ, Kapturska D, Daumlich V, Mital S, Buscot F, Hofrichter M, Gutknecht JL, Kruger D. 2014. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe. Sci Rep 4:7014. doi:10.1038/srep07014. PubMed DOI PMC
Urbanová M, Šnajdr J, Brabcová V, Merhautová V, Dobiášová P, Cajthaml T, Vaněk D, Frouz J, Šantrůčková H, Baldrian P. 2014. Litter decomposition along a primary post-mining chronosequence. Biol Fertil Soils 50:827–837. doi:10.1007/s00374-014-0905-z. DOI
Augusto L, Ranger J, Binkley D, Rothe A. 2002. Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253. doi:10.1051/forest:2002020. DOI
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372–380. doi:10.1016/j.tree.2010.01.010. PubMed DOI
Thoms C, Gleixner G. 2013. Seasonal differences in tree species' influence on soil microbial communities. Soil Biol Biochem 66:239–248. doi:10.1016/j.soilbio.2013.05.018. DOI
Brooks DD, Chan R, Starks ER, Grayston SJ, Jones MD. 2011. Ectomycorrhizal hyphae structure components of the soil bacterial community for decreased phosphatase production. FEMS Microbiol Ecol 76:245–255. doi:10.1111/j.1574-6941.2011.01060.x. PubMed DOI
Nordén U. 1994. Influence of tree species on acidification and mineral pools on deciduous forest soils of south Sweden. Water Air Soil Pollut 76:363–381. doi:10.1007/BF00482713. DOI
Langenbruch C, Helfrich M, Flessa H. 2011. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 352:389–403. doi:10.1007/s11104-011-1004-7. DOI
Cesarz S, Fender A-C, Beyer F, Valtanen K, Pfeiffer B, Gansert D, Hertel D, Polle A, Daniel R, Leuschner C, Scheu S. 2013. Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics. Soil Biol Biochem 61:23–32. doi:10.1016/j.soilbio.2013.02.003. DOI
Landesman WJ, Nelson DM, Fitzpatrick MC. 2014. Soil properties and tree species drive β-diversity of soil bacterial communities. Soil Biol Biochem 76:201–209. doi:10.1016/j.soilbio.2014.05.025. DOI
Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G. 2015. Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biol Biochem 81:219–227. doi:10.1016/j.soilbio.2014.11.020. DOI
Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G. 2010. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem 42:1558–1565. doi:10.1016/j.soilbio.2010.05.030. DOI
Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A. 2011. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402. doi:10.1038/ismej.2010.138. PubMed DOI PMC
Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, Valášková V. 2013. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–68. doi:10.1016/j.soilbio.2012.01.020. DOI
Šnajdr J, Cajthaml T, Valaskova V, Merhautova V, Petrankova M, Spetz P, Leppanen K, Baldrian P. 2011. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303. doi:10.1111/j.1574-6941.2010.00999.x. PubMed DOI
Tláskal V, Voříšková J, Baldrian P. 2016. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol 92:fiw177. doi:10.1093/femsec/fiw177. PubMed DOI
Fierer N, Bradford MA, Jackson R. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839. PubMed DOI
Voříšková J, Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486. doi:10.1038/ismej.2012.116. PubMed DOI PMC
Brabcová V, Nováková M, Davidová A, Baldrian P. 2016. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210:1369–1381. doi:10.1111/nph.13849. PubMed DOI
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC, Austin A. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952. doi:10.1111/1365-2745.12092. DOI
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C. 2013. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27. doi:10.1007/s11104-013-1630-3. DOI
de Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811. doi:10.1016/j.femsre.2004.11.005. PubMed DOI
Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE. 2016. Bacterial community succession in pine-wood decomposition. Front Microbiol 7:231. doi:10.3389/fmicb.2016.00231. PubMed DOI PMC
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S. 2016. Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol Ecol 92:fiw087. doi:10.1093/femsec/fiw087. PubMed DOI
Johnston SR, Boddy L, Weightman AJ. 2016. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 92:fiw179. doi:10.1093/femsec/fiw179. PubMed DOI
Hoppe B, Krüger K, Kahl T, Arnstadt T, Buscot F, Bauhus J, Wubet T. 2015. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci Rep 5:9456. doi:10.1038/srep09456. PubMed DOI PMC
Folman LB, Gunnewiek P, Boddy L, de Boer W. 2008. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63:181–191. doi:10.1111/j.1574-6941.2007.00425.x. PubMed DOI
Valášková V, de Boer W, Gunnewiek PJ, Pospíšek M, Baldrian P. 2009. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221. doi:10.1038/ismej.2009.64. PubMed DOI
Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R. 2012. Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675. doi:10.1007/s10529-011-0830-2. PubMed DOI PMC
Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P. 2008. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075. doi:10.1016/j.soilbio.2008.01.015. DOI
Uroz S, Ioannidis P, Lengelle J, Cebron A, Morin E, Buéé M, Martin F. 2013. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One 8:e55929. doi:10.1371/journal.pone.0055929. PubMed DOI PMC
Eilers KG, Lauber CL, Knight R, Fierer N. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903. doi:10.1016/j.soilbio.2010.02.003. DOI
Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R. 2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000. doi:10.1371/journal.pone.0017000. PubMed DOI PMC
Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, Jandl R, Schindlbacher A, Sessitsch A. 2012. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol 82:551–562. doi:10.1111/j.1574-6941.2012.01420.x. PubMed DOI PMC
Lipson DA. 2007. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427. doi:10.1111/j.1574-6941.2006.00240.x. PubMed DOI
Kurth F, Zeitler K, Feldhahn L, Neu TR, Weber T, Krištůfek V, Wubet T, Herrmann S, Buscot F, Tarkka M. 2013. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol 13:205. doi:10.1186/1471-2180-13-205. PubMed DOI PMC
Ferrenberg S, O'Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, Williams MW, Cleveland CC, Melbourne BA, Jiang L, Nemergut DR. 2013. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111. doi:10.1038/ismej.2013.11. PubMed DOI PMC
Jeanbille M, Buee M, Bach C, Cebron A, Frey-Klett P, Turpault MP, Uroz S. 2016. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb Ecol 71:482–493. doi:10.1007/s00248-015-0669-5. PubMed DOI
Högberg MN, Högberg P, Myrold DD. 2007. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601. PubMed
Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211. doi:10.1016/j.soilbio.2012.07.013. DOI
Norman JS, Barrett JE. 2016. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils. Soil Biol Biochem 94:169–172. doi:10.1016/j.soilbio.2015.11.015. DOI
Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105(Suppl 1):S11505–S11511. doi:10.1073/pnas.0801920105. PubMed DOI PMC
Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. doi:10.1038/ismej.2008.127. PubMed DOI PMC
Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. doi:10.1016/j.soilbio.2008.05.021. DOI
Naether A, Foesel BU, Naegele V, Wust PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EK, Linsenmair KE, Pfeiffer S, Renner S, Schoning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW. 2012. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406. doi:10.1128/AEM.01325-12. PubMed DOI PMC
Garcia-Fraile P, Benada O, Cajthaml T, Baldrian P, Lladó S. 2015. Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl Environ Microbiol 82:560–569. doi:10.1128/AEM.03353-15. PubMed DOI PMC
Větrovský T, Baldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e0057923. doi:10.1371/journal.pone.0057923. PubMed DOI PMC
Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P. 2016. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fertil Soils 52:251–260. doi:10.1007/s00374-015-1072-6. DOI
Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. 2016. The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. doi:10.3389/fmicb.2016.00744. PubMed DOI PMC
Uroz S, Buéé M, Murat C, Frey-Klett P, Martin F. 2010. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288. doi:10.1111/j.1758-2229.2009.00117.x. PubMed DOI
Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N. 2011. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455. doi:10.1016/j.soilbio.2011.03.012. PubMed DOI PMC
Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO. 2014. Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74:37–45. doi:10.1016/j.apsoil.2013.09.010. DOI
Eilers KG, Debenport S, Anderson S, Fierer N. 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65. doi:10.1016/j.soilbio.2012.03.011. DOI
Collignon C, Uroz S, Turpault MP, Frey-Klett P. 2011. Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol Biochem 43:2012–2022. doi:10.1016/j.soilbio.2011.05.008. DOI
Leveau JH, Uroz S, de Boer W. 2010. The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 12:281–292. doi:10.1111/j.1462-2920.2009.02010.x. PubMed DOI
Uroz S, Oger P, Tisserand E, Cebron A, Turpault MP, Buee M, De Boer W, Leveau JH, Frey-Klett P. 2016. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 6:27756. doi:10.1038/srep27756. PubMed DOI PMC
O'Brien SL, Gibbons SM, Owens SM, Hampton-Marcell J, Johnston ER, Jastrow JD, Gilbert JA, Meyer F, Antonopoulos DA. 2016. Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051. doi:10.1111/1462-2920.13231. PubMed DOI PMC
Martiny JB, Eisen JA, Penn K, Allison SD, Horner-Devine MC. 2011. Drivers of b-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854. doi:10.1073/pnas.1016308108. PubMed DOI PMC
Spielvogel S, Prietzel J, Kögel-Knabner I. 2016. Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma 267:112–122. doi:10.1016/j.geoderma.2015.12.001. DOI
Izumi H, Finlay RD. 2011. Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ Microbiol 13:819–830. doi:10.1111/j.1462-2920.2010.02393.x. PubMed DOI
Brockett BFT, Prescott CE, Grayston SJ. 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20. doi:10.1016/j.soilbio.2011.09.003. DOI
Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR. 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879. doi:10.1890/11-1745.1. PubMed DOI
Pollierer MM, Langel R, Korner C, Maraun M, Scheu S. 2007. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. doi:10.1111/j.1461-0248.2007.01064.x. PubMed DOI
Phillips RP, Finzi AC, Bernhardt ES. 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194. doi:10.1111/j.1461-0248.2010.01570.x. PubMed DOI
Beidler KV, Taylor BN, Strand AE, Cooper ER, Schonholz M, Pritchard SG. 2015. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. New Phytol 205:1153–1163. doi:10.1111/nph.13123. PubMed DOI
Fender A-C, Leuschner C, Schützenmeister K, Gansert D, Jungkunst HF. 2013. Rhizosphere effects of tree species—large reduction of N2O emission by saplings of ash, but not of beech, in temperate forest soil. Eur J Soil Biol 54:7–15. doi:10.1016/j.ejsobi.2012.10.010. DOI
Markkola AM. 1996. Resource allocation in ectomycorrhizal symbiosis in Scots pine affected by environmental changes. University of Oulu, Oulu, Finland.
Kluber LA, Smith JE, Myrold DD. 2011. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem 43:1042–1050. doi:10.1016/j.soilbio.2011.01.022. DOI
Churchland C, Grayston SJ. 2014. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:261. doi:10.3389/fmicb.2014.00261. PubMed DOI PMC
Aspray TJ, Eirian Jones E, Whipps JM, Bending GD. 2006. Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25–33. doi:10.1111/j.1574-6941.2005.00051.x. PubMed DOI
Vik U, Logares R, Blaalid R, Halvorsen R, Carlsen T, Bakke I, Kolsto AB, Okstad OA, Kauserud H. 2013. Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471. doi:10.1038/srep03471. PubMed DOI PMC
Collignon C, Calvaruso C, Turpault M-P. 2011. Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst) and beech (Fagus sylvatica L) stands. Plant Soil 349:355–366. doi:10.1007/s11104-011-0881-0. DOI
Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC. 2013. Stoichiometry constrains microbial response to root exudation—insights from a model and a field experiment in a temperate forest. Biogeosciences 10:821–838. doi:10.5194/bg-10-821-2013. DOI
Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP. 2015. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094. doi:10.1111/gcb.12816. PubMed DOI
Brzostek ER, Greco A, Drake JE, Finzi AC. 2012. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115:65–76. doi:10.1007/s10533-012-9818-9. DOI
Loeppmann S, Blagodatskaya E, Pausch J, Kuzyakov Y. 2016. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol Biochem 92:111–118. doi:10.1016/j.soilbio.2015.09.020. DOI
Tefs C, Gleixner G. 2012. Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest—evidence from C, N and 14C content. For Ecol Manage 263:131–137. doi:10.1016/j.foreco.2011.09.010. DOI
Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM. 2013. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731. doi:10.1371/journal.pone.0055731. PubMed DOI PMC
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A. 2010. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–858. doi:10.1111/j.1469-8137.2010.03321.x. PubMed DOI PMC
Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, da Rocha UN, He Z, Pett-Ridge J, Brodie EL, Zhou J, Firestone M. 2015. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6:e00746. doi:10.1128/mBio.00746-15. PubMed DOI PMC
Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI. 2014. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep 6:293–306. doi:10.1111/1758-2229.12152. PubMed DOI
Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553. doi:10.1073/pnas.1302837110. PubMed DOI PMC
Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587. doi:10.1038/ismej.2014.17. PubMed DOI PMC
Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M. 2015. Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621. doi:10.1111/1462-2920.12452. PubMed DOI
Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336. PubMed DOI
Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237. PubMed DOI PMC
Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X. 2015. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78. doi:10.1016/j.soilbio.2014.09.028. DOI
Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M. 2016. Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil 407:203–215. doi:10.1007/s11104-016-2888-z. DOI
Lladó S, Baldrian P. 2017. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS One 12:e0171638. doi:10.1371/journal.pone.0171638. PubMed DOI PMC
Izumi H, Cairney JW, Killham K, Moore E, Alexander IJ, Anderson IC. 2008. Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in south-eastern Queensland, Australia. FEMS Microbiol Lett 282:196–204. doi:10.1111/j.1574-6968.2008.01122.x. PubMed DOI
Tanaka M, Nara K. 2009. Phylogenetic diversity of non-nodulating Rhizobium associated with pine ectomycorrhizae. FEMS Microbiol Ecol 69:329–343. doi:10.1111/j.1574-6941.2009.00720.x. PubMed DOI
Yu HX, Wang CY, Tang M. 2013. Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the Loess Plateau, northwest China. Sci World J 2013:606480. doi:10.1155/2013/606480. PubMed DOI PMC
Marupakula S, Mahmood S, Finlay RD. 2016. Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ Microbiol 18:1470–1483. doi:10.1111/1462-2920.13102. PubMed DOI
Labbe JL, Weston DJ, Dunkirk N, Pelletier DA, Tuskan GA. 2014. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Front Plant Sci 5:579. doi:10.3389/fpls.2014.00579. PubMed DOI PMC
Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi:10.1111/j.1469-8137.2007.02191.x. PubMed DOI
Fransson P, Andersson A, Norström S, Bylund D, Bent E. 2016. Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure. Fungal Ecol 20:211–224. doi:10.1016/j.funeco.2016.01.003. DOI
Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD. 2006. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541. doi:10.1007/s00572-006-0068-3. PubMed DOI
Lang C, Seven J, Polle A. 2011. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21:297–308. doi:10.1007/s00572-010-0338-y. PubMed DOI PMC
Korkama T, Fritze H, Pakkanen A, Pennanen T. 2007. Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807. doi:10.1111/j.1469-8137.2006.01957.x. PubMed DOI
Xia M, Talhelm AF, Pregitzer KS. 2015. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytol 208:715–726. doi:10.1111/nph.13494. PubMed DOI PMC
Van Dyk JS, Pletschke BI. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. doi:10.1016/j.biotechadv.2012.03.002. PubMed DOI
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. 2014. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 78:614–649. doi:10.1128/MMBR.00035-14. PubMed DOI PMC
Berlemont R, Martiny AC. 2013. Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79:1545–1554. doi:10.1128/AEM.03305-12. PubMed DOI PMC
Větrovský T, Steffen KT, Baldrian P. 2014. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9:e89108. doi:10.1371/journal.pone.0089108. PubMed DOI PMC
Brumm PJ. 2013. Bacterial genomes: what they teach us about cellulose degradation. Biofuels 4:669–681. doi:10.4155/bfs.13.44. DOI
Lopez-Mondejar R, Zuhlke D, Vetrovsky T, Becher D, Riedel K, Baldrian P. 2016. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:104. doi:10.1186/s13068-016-0518-x. PubMed DOI PMC
Llado S, Benada O, Cajthaml T, Baldrian P, Garcia-Fraile P. 2016. Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park. Syst Appl Microbiol 39:14–19. doi:10.1016/j.syapm.2015.12.005. PubMed DOI
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M. 2007. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224. doi:10.1371/journal.pone.0000224. PubMed DOI PMC
Yokoyama H, Yamashita T, Morioka R, Ohmori H. 2014. Extracellular secretion of noncatalytic plant cell wall-binding proteins by the cellulolytic thermophile Caldicellulosiruptor bescii. J Bacteriol 196:3784–3792. doi:10.1128/JB.01897-14. PubMed DOI PMC
Vodovnik M, Duncan SH, Reid MD, Cantlay L, Turner K, Parkhill J, Lamed R, Yeoman CJ, Miller ME, White BA, Bayer EA, Marinsek-Logar R, Flint HJ. 2013. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLoS One 8:e65333. doi:10.1371/journal.pone.0065333. PubMed DOI PMC
Wegmann U, Louis P, Goesmann A, Henrissat B, Duncan SH, Flint HJ. 2014. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (“Ruminococcus bicirculans”) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ Microbiol 16:2879–2890. doi:10.1111/1462-2920.12217. PubMed DOI
Himmel ME, Xu Q, Luo Y, Ding S, Lamed R, Bayer EA. 2010. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341. doi:10.4155/bfs.09.25. DOI
Sukharnikov LO, Cantwell BJ, Podar M, Zhulin IB. 2011. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol 29:473–479. doi:10.1016/j.tibtech.2011.04.008. PubMed DOI PMC
Yang JK, Zhang JJ, Yu HY, Cheng JW, Miao LH. 2014. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol 98:1449–1458. doi:10.1007/s00253-013-5130-4. PubMed DOI
Bandounas L, Wierckx NJ, de Winde JH, Ruijssenaars HJ. 2011. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94. doi:10.1186/1472-6750-11-94. PubMed DOI PMC
Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F. 2008. Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol Biochem 40:638–648. doi:10.1016/j.soilbio.2007.09.013. DOI
Nacke H, Fischer C, Thurmer A, Meinicke P, Daniel R. 2014. Land use type significantly affects microbial gene transcription in soil. Microb Ecol 67:919–930. doi:10.1007/s00248-014-0377-6. PubMed DOI
Baldrian P, Větrovský T, Cajthaml T, Dobiášová P, Petránková M, Šnajdr J, Eichlerová I. 2013. Estimation of fungal biomass in forest litter and soil. Fungal Ecol 6:1–11. doi:10.1016/j.funeco.2012.10.002. DOI
Fernandez CW, Koide RT. 2014. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem 77:150–157. doi:10.1016/j.soilbio.2014.06.026. DOI
Beier S, Bertilsson S. 2013. Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149. doi:10.3389/fmicb.2013.00149. PubMed DOI PMC
Talamantes D, Biabini N, Dang H, Abdoun K, Berlemont R. 2016. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol Biofuels 9:133. doi:10.1186/s13068-016-0538-6. PubMed DOI PMC
Bai Y, Eijsink VG, Kielak AM, van Veen JA, de Boer W. 2016. Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environ Microbiol 18:38–49. doi:10.1111/1462-2920.12545. PubMed DOI
Tolonen AC, Cerisy T, El-Sayyed H, Boutard M, Salanoubat M, Church GM. 2015. Fungal lysis by a soil bacterium fermenting cellulose. Environ Microbiol 17:2618–2627. doi:10.1111/1462-2920.12495. PubMed DOI
Wang X, Sharp CE, Jones GM, Grasby SE, Brady AL, Dunfield PF. 2015. Stable-isotope probing identifies uncultured Planctomycetes as primary degraders of a complex heteropolysaccharide in soil. Appl Environ Microbiol 81:4607–4615. doi:10.1128/AEM.00055-15. PubMed DOI PMC
Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV. 2015. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551. doi:10.1111/nph.13138. PubMed DOI PMC
Högberg MN, Briones MJ, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Nasholm T, Högberg P. 2010. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493. doi:10.1111/j.1469-8137.2010.03274.x. PubMed DOI
Kuzyakov Y, Cheng W. 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925. doi:10.1016/S0038-0717(01)00117-1. DOI
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792. doi:10.1038/35081058. PubMed DOI
Buée M, de Boer W, Martin F, van Overbeek L, Jurkevitch E. 2009. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212. doi:10.1007/s11104-009-9991-3. DOI
Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618. doi:10.1126/science.1231923. PubMed DOI
Wang Y, Li C, Wang Q, Wang H, Duan B, Zhang G. 2016. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soils Sediments 16:1858–1870. doi:10.1007/s11368-016-1375-8. DOI
Haichar FE, Heulin T, Guyonnet JP, Achouak W. 2016. Stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotechnol 41:9–13. doi:10.1016/j.copbio.2016.02.023. PubMed DOI
Churchland C, Weatherall A, Briones MJI, Grayston SJ. 2012. Stable-isotope labeling and probing of recent photosynthates into respired CO2, soil microbes and soil mesofauna using a xylem and phloem stem-injection technique on Sitka spruce (Picea sitchensis). Rapid Comm Mass Spectrom 26:2493–2501. doi:10.1002/rcm.6368. PubMed DOI
Uroz S, Courty PE, Pierrat JC, Peter M, Buéé M, Turpault MP, Garbaye J, Frey-Klett P. 2013. Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum. Microb Ecol 66:404–415. doi:10.1007/s00248-013-0199-y. PubMed DOI
Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER. 2006. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56:34–43. doi:10.1111/j.1574-6941.2005.00048.x. PubMed DOI
Lau E, Nolan EJ IV, Dillard ZW, Dague RD, Semple AL, Wentzell WL. 2015. High throughput sequencing to detect differences in methanotrophic Methylococcaceae and Methylocystaceae in surface peat, forest soil, and sphagnum moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms 3:113–136. doi:10.3390/microorganisms3020113. PubMed DOI PMC
Savi F, Di Bene C, Canfora L, Mondini C, Fares S. 2016. Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agric For Meteorol 226–227:67–79.
Covey KR, Wood SA, Warren RJ, Lee X, Bradford MA. 2012. Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705. doi:10.1029/2012GL052361. DOI
Serrano-Silva N, Sarria-Guzmán Y, Dendooven L, Luna-Guido M. 2014. Methanogenesis and methanotrophy in soil: a review. Pedosphere 24:291–307. doi:10.1016/S1002-0160(14)60016-3. DOI
Shoemaker JK, Keenan TF, Hollinger DY, Richardson AD. 2014. Forest ecosystem changes from annual methane source to sink depending on late summer water balance. Geophys Res Lett 41:673–679. doi:10.1002/2013GL058691. DOI
Esson KC, Lin X, Kumaresan D, Chanton JP, Murrell JC, Kostka JE. 2016. Alpha- and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol 82:2363–2371. doi:10.1128/AEM.03640-15. PubMed DOI PMC
Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. 2013. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417. doi:10.1111/1462-2920.12149. PubMed DOI
Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K, Fujisawa T, Saito A, Futamata H, Hattori R, Shimomura Y, Haruta S, Morimoto S, Wang Y, Sakai Y, Hattori M, Aizawa S-I, Nagashima KVP, Masuda S, Hattori T, Yamashita A, Bao Z, Hayatsu M, Kajiya-Kanegae H, Yoshinaga I, Sakamoto K, Toyota K, Nakao M, Kohara M, Anda M, Niwa R, Jung-Hwan P, Sameshima-Saito R, Tokuda S-I, Yamamoto S, Yamamoto S, Yokoyama T, Akutsu T, Nakamura Y, Nakahira-Yanaka Y, Takada Hoshino Y, Hirakawa H, Mitsui H, Terasawa K, Itakura M, Sato S, Ikeda-Ohtsubo W, Sakakura N, Kaminuma E, Minamisawa K. 2012. Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microb Environ 27:306–315. PubMed PMC
VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW. 2015. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 9:2435–2441. doi:10.1038/ismej.2015.54. PubMed DOI PMC
Berthrong ST, Yeager CM, Gallegos-Graves LV, Steven B, Eichorst SA, Jackson RB, Kuske CR. 2014. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80:3103–3112. doi:10.1128/AEM.04034-13. PubMed DOI PMC
Hsu SF, Buckley DH. 2009. Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136. doi:10.1038/ismej.2008.82. PubMed DOI
Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25. doi:10.1016/j.soilbio.2014.03.021. DOI
Pajares S, Bohannan BJM. 2016. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045. doi:10.3389/fmicb.2016.01045. PubMed DOI PMC
Jung J, Yeom J, Han J, Kim J, Park W. 2012. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils. J Microbiol 50:365–373. doi:10.1007/s12275-012-1465-2. PubMed DOI
Isobe K, Koba K, Otsuka S, Senoo K. 2011. Nitrification and nitrifying microbial communities in forest soils. J For Res 16:351–362. doi:10.1007/s10310-011-0266-5. DOI
Long X, Chen C, Xu Z, Oren R, He J-Z. 2012. Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol Biochem 46:163–171. doi:10.1016/j.soilbio.2011.12.013. DOI
Laverman AM, Speksnijder AG, Braster M, Kowalchuk GA, Verhoef HA, Van Verseveld HW. 2001. Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microb Ecol 42:35–45. doi:10.1007/s002480000038. PubMed DOI
Szukics U, Hackl E, Zechmeister-Boltenstern S, Sessitsch A. 2012. Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils. Microbiol Res 167:103–109. doi:10.1016/j.micres.2011.04.002. PubMed DOI PMC
Hynes HM, Germida JJ. 2012. Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biol Biochem 46:18–25. doi:10.1016/j.soilbio.2011.10.018. DOI
Malchair S, Carnol M. 2012. AOB community structure and richness under European beech, sessile oak, Norway spruce and Douglas fir at three temperate forest sites. Plant Soil 366:521–535. doi:10.1007/s11104-012-1450-x. DOI
Cong J, Yang Y, Liu X, Lu H, Liu X, Zhou J, Li D, Yin H, Ding J, Zhang Y. 2015. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep 5:10007. doi:10.1038/srep10007. PubMed DOI PMC
Freedman Z, Eisenlord SD, Zak DR, Xue K, He Z, Zhou J. 2013. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biol Biochem 66:130–138. doi:10.1016/j.soilbio.2013.07.010. DOI
Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM. 2006. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8:214–222. doi:10.1111/j.1462-2920.2005.00882.x. PubMed DOI
Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA, Ritalahti KM, Löffler FE, Konstantinidis KT. 2014. Detecting nitrous oxide reductase (NosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio 5:e01193-14. doi:10.1128/mBio.01193-14. PubMed DOI PMC
Priyanka J, Mukherjee K. 2015. Diversity study of nitrate reducing bacteria from soil samples—a metagenomics approach. J Comp Sci Syst Biol 8:191–198.
Rosch C, Mergel A, Bothe H. 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829. doi:10.1128/AEM.68.8.3818-3829.2002. PubMed DOI PMC
Nelson MB, Martiny AC, Martiny JBH. 2016. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci U S A 113:8033–8040. doi:10.1073/pnas.1601070113. PubMed DOI PMC
Szukics U, Hackl E, Zechmeister-Boltenstern S, Sessitsch A. 2009. Contrasting response of two forest soils to nitrogen input: rapidly altered NO and N2O emissions and nirK abundance. Biol Fertil Soils 45:855–863. doi:10.1007/s00374-009-0396-5. DOI
Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. doi:10.1104/pp.111.175448. PubMed DOI PMC
Barton LL, Northup DE. 2011. Microbial ecology. Wiley-Blackwell, Hoboken, NJ.
Bergkemper F, Scholer A, Engel M, Lang F, Kruger J, Schloter M, Schulz S. 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbiol 18:1988–2000. doi:10.1111/1462-2920.13188. PubMed DOI
Bergkemper F, Kublik S, Lang F, Kruger J, Vestergaard G, Schloter M, Schulz S. 2016. Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil. J Microbiol Methods 125:91–97. doi:10.1016/j.mimet.2016.04.011. PubMed DOI
Singh BK, Bardgett RD, Smith P, Reay DS. 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790. doi:10.1038/nrmicro2439. PubMed DOI
Mouri G, Nakano K, Tsuyama I, Tanaka N. 2016. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios. Environ Res 149:288–296. doi:10.1016/j.envres.2016.01.024. PubMed DOI
Ruosch M, Spahni R, Joos F, Henne PD, van der Knaap WO, Tinner W. 2016. Past and future evolution of Abies alba forests in Europe—comparison of a dynamic vegetation model with palaeo data and observations. Glob Chang Biol 22:727–740. doi:10.1111/gcb.13075. PubMed DOI
Ma W, Liang J, Cumming JR, Lee E, Welsh AB, Watson JV, Zhou M. 2016. Fundamental shifts of central hardwood forests under climate change. Ecol Model 332:28–41. doi:10.1016/j.ecolmodel.2016.03.021. DOI
Crabbe RA, Dash J, Rodriguez-Galiano VF, Janous D, Pavelka M, Marek MV. 2016. Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ 563–564:486–495. doi:10.1016/j.scitotenv.2016.04.124. PubMed DOI
Zhang Z, Qiao M, Li D, Yin H, Liu Q. 2016. Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers, denitrifiers and ammonifiers? Eur J Soil Biol 74:60–68. doi:10.1016/j.ejsobi.2016.03.007. DOI
Vanhala P, Bergström I, Haaspuro T, Kortelainen P, Holmberg M, Forsius M. 2016. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Sci Total Environ 557–558:51–57. doi:10.1016/j.scitotenv.2016.03.040. PubMed DOI
Vanhala P, Karhu K, Tuomi M, Björklöf K, Fritze H, Hyvärinen H, Liski J. 2011. Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition. Glob Chang Biol 17:538–550. doi:10.1111/j.1365-2486.2009.02154.x. DOI
Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi:10.1126/science.1155121. PubMed DOI
Dooley SR, Treseder KK. 2011. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109:49–61. doi:10.1007/s10533-011-9633-8. DOI
Pold G, Melillo JM, DeAngelis KM. 2015. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol 6:480. doi:10.3389/fmicb.2015.00480. PubMed DOI PMC
Norby RJ, Delucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102:18052–18056. doi:10.1073/pnas.0509478102. PubMed DOI PMC
Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate BA, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. Progressive N limitation of ecosystem responses to rising CO2. Bioscience 54:731–739. doi:10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2. DOI
Meier IC, Pritchard SG, Brzostek ER, McCormack ML, Phillips RP. 2015. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytol 205:1164–1174. doi:10.1111/nph.13122. PubMed DOI
Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR, Kuske CR. 2012. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol 14:1145–1158. doi:10.1111/j.1462-2920.2011.02695.x. PubMed DOI
Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW. 2014. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Chang 4:1099–1102. doi:10.1038/nclimate2436. DOI
Dunbar J, Gallegos-Graves LV, Steven B, Mueller R, Hesse C, Zak DR, Kuske CR. 2014. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biol Biochem 76:227–234. doi:10.1016/j.soilbio.2014.05.027. DOI
Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D. 2008. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941. doi:10.1111/j.1462-2920.2007.01512.x. PubMed DOI
Garcia-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, Sylvain ZA, de Tomasel CM, Wall DH. 2015. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Chang Biol 21:1590–1600. doi:10.1111/gcb.12788. PubMed DOI
Schleppi P, Bucher-Wallin I, Hagedorn F, Körner C. 2012. Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob Chang Biol 18:757–768. doi:10.1111/j.1365-2486.2011.02559.x. DOI
Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA. 2016. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531:633–636. doi:10.1038/nature17142. PubMed DOI
Zhao C, Zhu L, Liang J, Yin H, Yin C, Li D, Zhang N, Liu Q. 2014. Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in Eastern Tibetan Plateau, China. Plant Soil 382:189–201. doi:10.1007/s11104-014-2153-2. DOI
Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S. 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43:1417–1425. doi:10.1016/j.soilbio.2011.03.005. PubMed DOI PMC
Rousk K, Rousk J, Jones DL, Zackrisson O, DeLuca TH. 2013. Feather moss nitrogen acquisition across natural fertility gradients in boreal forests. Soil Biol Biochem 61:86–95. doi:10.1016/j.soilbio.2013.02.011. DOI
Peltoniemi K, Laiho R, Juottonen H, Kiikkila O, Makiranta P, Minkkinen K, Pennanen T, Penttilä T, Sarjala T, Tuittila ES, Tuomivirta T, Fritze H. 2015. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens. FEMS Microbiol Ecol 91:fiv062. doi:10.1093/femsec/fiv062. PubMed DOI
Wu J, Xiong J, Hu C, Shi Y, Wang K, Zhang D. 2015. Temperature sensitivity of soil bacterial community along contrasting warming gradient. Appl Soil Ecol 94:40–48. doi:10.1016/j.apsoil.2015.04.018. DOI
Xue K, Xie J, Zhou A, Liu F, Li D, Wu L, Deng Y, He Z, Van Nostrand JD, Luo Y, Zhou J. 2016. Warming alters expressions of microbial functional genes important to ecosystem functioning. Front Microbiol 7:668. doi:10.3389/fmicb.2016.00668. PubMed DOI PMC
Schütt M, Borken W, Spott O, Stange CF, Matzner E. 2014. Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biol Biochem 69:320–327. doi:10.1016/j.soilbio.2013.11.014. DOI
Li J, Ziegler SE, Lane CS, Billings SA. 2013. Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biol Biochem 66:204–213. doi:10.1016/j.soilbio.2013.07.018. DOI
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0. DOI
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674. PubMed DOI
Tamm CO. 1991. Nitrogen in terrestrial ecosystems. Springer, Berlin, Germany.
Högberg MN, Blaško R, Bach LH, Hasselquist NJ, Egnell G, Näsholm T, Högberg P. 2014. The return of an experimentally N-saturated boreal forest to an N-limited state: observations on the soil microbial community structure, biotic N retention capacity and gross N mineralisation. Plant Soil 381:45–60. doi:10.1007/s11104-014-2091-z. DOI
Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manage 222:459–468. doi:10.1016/j.foreco.2005.11.002. DOI
Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Martin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K. 2014. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316. doi:10.1007/s10533-014-0004-0. DOI
Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. doi:10.1038/ismej.2011.159. PubMed DOI PMC
Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF. 2008. Simulated atmospheric NO3 deposition increases soil organic matter by slowing decomposition. Ecol Appl 18:2016–2027. doi:10.1890/07-1743.1. PubMed DOI
Freedman ZB, Zak DR. 2015. Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities. Mol Ecol 24:3170–3180. doi:10.1111/mec.13224. PubMed DOI
Freedman ZB, Upchurch RA, Zak DR, Cline LC. 2016. Anthropogenic N deposition slows decay by favoring bacterial metabolism: insights from metagenomic analyses. Front Microbiol 7:259. doi:10.3389/fmicb.2016.00259. PubMed DOI PMC
Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ. 2015. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang Biol 21:3169–3180. doi:10.1111/gcb.12904. PubMed DOI
Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927. doi:10.1111/j.1365-2486.2012.02639.x. DOI
Kamble PN, Rousk J, Frey SD, Bååth E. 2013. Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil. Soil Biol Biochem 59:32–37. doi:10.1016/j.soilbio.2012.12.017. DOI
Frey SD, Knorr M, Parrent JL, Simpson RT. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manage 196:159–171. doi:10.1016/j.foreco.2004.03.018. DOI
Long X, Chen C, Xu Z, Linder S, He J. 2012. Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. J Soils Sediments 12:1124–1133. doi:10.1007/s11368-012-0532-y. DOI
Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC. 2013. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol 83:478–493. doi:10.1111/1574-6941.12009. PubMed DOI
Aber J, McDowell WH, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty SG, Currie WS, Rustad L, Fernandez IJ. 1998. Nitrogen saturation in temperate forests. Bioscience 48:921–934. doi:10.2307/1313296. DOI
Zak DR, Holmes WE, Tomlinson MJ, Pregitzer KS, Burton AJ. 2006. Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3− deposition. Ecosystems 9:242–253. doi:10.1007/s10021-005-0085-7. DOI
Zak DR, Pregitzer KS, Kubiske ME, Burton AJ. 2011. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226. doi:10.1111/j.1461-0248.2011.01692.x. PubMed DOI
Li J, Ziegler S, Lane CS, Billings SA. 2012. Warming-enhanced preferential microbial mineralization of humified boreal forest soil organic matter: interpretation of soil profiles along a climate transect using laboratory incubations. J Geophys Res Biogeosci 117:G2008.
Luo X, Fu X, Yang Y, Cai P, Peng S, Chen W, Huang Q. 2016. Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 6:20326. doi:10.1038/srep20326. PubMed DOI PMC
Savage KE, Parton WJ, Davidson EA, Trumbore SE, Frey SD. 2013. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Glob Chang Biol 19:2389–2400. doi:10.1111/gcb.12224. PubMed DOI
Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD. 2012. Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Chang Biol 18:1173–1184. doi:10.1111/j.1365-2486.2011.02545.x. DOI
Schindlbacher A, Schnecker J, Takriti M, Borken W, Wanek W. 2015. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest—no indications for thermal adaptations. Glob Chang Biol 21:4265–4277. doi:10.1111/gcb.12996. PubMed DOI PMC
Yue K, Peng Y, Peng C, Yang W, Peng X, Wu F. 2016. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci Rep 6:19895. doi:10.1038/srep19895. PubMed DOI PMC
Fungal communities in soils under global change
Fungal Communities Are Important Determinants of Bacterial Community Composition in Deadwood