Daily Activity of the Housefly, Musca domestica, Is Influenced by Temperature Independent of 3' UTR period Gene Splicing

. 2017 Aug 07 ; 7 (8) : 2637-2649. [epub] 20170807

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28620087

Circadian clocks orchestrate daily activity patterns and free running periods of locomotor activity under constant conditions. While the first often depends on temperature, the latter is temperature-compensated over a physiologically relevant range. Here, we explored the locomotor activity of the temperate housefly Musca domestica Under low temperatures, activity was centered round a major and broad afternoon peak, while high temperatures resulted in activity throughout the photophase with a mild midday depression, which was especially pronounced in males exposed to long photoperiods. While period (per) mRNA peaked earlier under low temperatures, no temperature-dependent splicing of the last per 3' end intron was identified. The expression of timeless, vrille, and Par domain protein 1 was also influenced by temperature, each in a different manner. Our data indicated that comparable behavioral trends in daily activity distribution have evolved in Drosophila melanogaster and M. domestica, yet the behaviors of these two species are orchestrated by different molecular mechanisms.

Zobrazit více v PubMed

Abascal F., Zardoya R., Posada D., 2005.  ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105. PubMed

Bajgar A., Dolezel D., Hodkova M., 2013a Endocrine regulation of non-circadian behavior of circadian genes in insect gut. J. Insect Physiol. 59: 881–886. PubMed

Bajgar A., Jindra M., Dolezel D., 2013b Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl. Acad. Sci. USA 110: 4416–4421. PubMed PMC

Bazalova O., Kvicalova M., Valkova T., Slaby P., Bartos P., et al. , 2016.  Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl. Acad. Sci. USA. 113: 1660–1665. PubMed PMC

Beaver L. M., Rush B. L., Gvakharia B. O., Giebultowicz J. M., 2003.  Noncircadian regulation and function of clock genes period and timeless in oogenesis of Drosophila melanogaster. J. Biol. Rhythms 18: 463–472. PubMed

Boothroyd C. E., Wijnen H., Naef F., Saez L., Young M. W., 2007.  Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 3: e54. PubMed PMC

Cao W., Edery I., 2017.  Mid-day siesta in natural populations of D. melanogaster from Africa exhibits an altitudinal cline and is regulated by splicing of a thermosensitive intron in the period clock gene. BMC Evol. Biol. 17: 32. PubMed PMC

Codd V., Dolezel D., Stehlik J., Piccin A., Garner K. J., et al. , 2007.  Circadian rhythm gene regulation in the housefly Musca domestica. Genetics 177: 1539–1551. PubMed PMC

Collins B. H., Rosato E., Kyriacou C. P., 2004.  Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl. Acad. Sci. USA 101: 1945–1950. PubMed PMC

Cyran S. A., Buchsbaum A. M., Reddy K. L., Lin M. C., Glossop N. R. J., et al. , 2003.  vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112: 329–341. PubMed

Damulewicz M., Loboda A., Bukowska-Strakova K., Jozkowicz A., Dulak J., et al. , 2015.  Clock and clock-controlled genes are differently expressed in the retina, lamina and in selected cells of the visual system of Drosophila melanogaster. Front. Cell. Neurosci. 9: 353. PubMed PMC

Dolezel D., Sauman I., Kost’al V., Hodkova M., 2007.  Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus. J. Biol. Rhythms 22: 335–342. PubMed

Dolezel D., Zdechovanova L., Sauman I., Hodkova M., 2008.  Endocrine-dependent expression of circadian clock genes in insects. Cell. Mol. Life Sci. 65: 964–969. PubMed PMC

Dolezelova E., Dolezel D., Hall J. C., 2007.  Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics 177: 329–345. PubMed PMC

Emery P., So W. V., Kaneko M., Hall J. C., Rosbash M., 1998.  CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95: 669–679. PubMed

Emery P., Stanewsky R., Helfrich-Forster C., Emery-Le M., Hall J. C., et al. , 2000.  Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26: 493–504. PubMed

Green E. W., O’Callaghan E. K., Hansen C. N., Bastianello S., Bhutani S., et al. , 2015.  Drosophila circadian rhythms in seminatural environments: summer afternoon component is not an artifact and requires TrpA1 channels. Proc. Natl. Acad. Sci. USA 112: 8702–8707. PubMed PMC

Harding H. P., Lazar M. A., 1993.  The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol. Cell. Biol. 13: 3113–3121. PubMed PMC

Hediger M., Niessen M., Wimmer E. A., Dubendorfer A., Bopp D., 2001.  Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol. Biol. 10: 113–119. PubMed

Iwai S., Fukui Y., Fujiwara Y., Takeda M., 2006.  Structure and expressions of two circadian clock genes, period and timeless in the commercial silkmoth, Bombyx mori. J. Insect Physiol. 52: 625–637. PubMed

Kadener S., Menet J. S., Sugino K., Horwich M. D., Weissbein U., et al. , 2009.  A role for microRNAs in the Drosophila circadian clock. Genes Dev. 23: 2179–2191. PubMed PMC

Kauranen H., Menegazzi P., Costa R., Helfrich-Forster C., Kankainen A., et al. , 2012.  Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana. J. Biol. Rhythms 27: 377–387. PubMed

Kelley J. L., Peyton J. T., Fiston-Lavier A. S., Teets N. M., Yee M. C., et al. , 2014.  Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 5: 4611. PubMed PMC

Kidd P. B., Young M. W., Siggia E. D., 2015.  Temperature compensation and temperature sensation in the circadian clock. Proc. Natl. Acad. Sci. USA 112: E6284–E6292. PubMed PMC

Kobelkova A., Bajgar A., Dolezel D., 2010.  Functional molecular analysis of a circadian clock gene timeless promoter from the Drosophilid fly Chymomyza costata. J. Biol. Rhythms 25: 399–409. PubMed

Kobelkova A., Zavodska R., Sauman I., Bazalova O., Dolezel D., 2015.  Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella. J. Biol. Rhythms. 30: 104–116. PubMed

Kostal V., Tollarova M., Dolezel D., 2008.  Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus. J. Insect Physiol. 54: 77–88. PubMed

Kula-Eversole E., Nagoshi E., Shang Y. H., Rodriguez J., Allada R., et al. , 2010.  Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc. Natl. Acad. Sci. USA 107: 13497–13502. PubMed PMC

Lankinen P., 1986.  Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila-littoralis. J. Comp. Physiol. A 159: 123–142. PubMed

Low K. H., Lim C., Ko H. W., Ederyl I., 2008.  Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 60: 1054–1067. PubMed PMC

Majercak J., Sidote D., Hardin P. E., Edery I., 1999.  How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24: 219–230. PubMed

Majercak J., Chen W. F., Edery I., 2004.  Splicing of the period gene 3’-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell. Biol. 24: 3359–3372. PubMed PMC

Markert M. J., Zhang Y., Enuameh M. S., Reppert S. M., Wolfe S. A., et al. , 2016.  Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 6: 905–915. PubMed PMC

Matsushima A., Sato S., Chuman Y., Takeda Y., Yokotani S., et al. , 2004.  cDNA cloning of the housefly pigment-dispersing factor (PDF) precursor protein and its peptide comparison among the insect circadian neuropeptides. J. Pept. Sci. 10: 82–91. PubMed

Meireles-Filho A. C., Bardet A. F., Yanez-Cuna J. O., Stampfel G., Stark A., 2014.  cis-regulatory requirements for tissue-specific programs of the circadian clock. Curr. Biol. 24: 1–10. PubMed

Miskiewicz K., Schurmann F. W., Pyza E., 2008.  Circadian release of pigment-dispersing factor in the visual system of the housefly, Musca domestica. J. Comp. Neurol. 509: 422–435. PubMed

Misof B., Liu S., Meusemann K., Peters R. S., Donath A., et al. , 2014.  Phylogenomics resolves the timing and pattern of insect evolution. Science 346: 763–767. PubMed

Montelli S., Mazzotta G., Vanin S., Caccin L., Corra S., et al. , 2015.  period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster. J. Biol. Rhythms 30: 217–227. PubMed

Piccin A., Couchman M., Clayton J. D., Chalmers D., Costa R., et al. , 2000.  The clock gene period of the housefly, Musca domestica, rescues behavioral rhythmicity in Drosophila melanogaster. Evidence for intermolecular coevolution? Genetics 154: 747–758. PubMed PMC

Pyza E., Meinertzhagen I. A., 1997.  Neurites of period-expressing PDH cells in the fly’s optic lobe exhibit circadian oscillations in morphology. Eur. J. Neurosci. 9: 1784–1788. PubMed

Rakshit K., Krishnan N., Guzik E. M., Pyza E., Giebultowicz J. M., 2012.  Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol. Int. 29: 5–14. PubMed PMC

Rosato E., Kyriacou C. P., 2006.  Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc. 1: 559–568. PubMed

Rubin E. B., Shemesh Y., Cohen M., Elgavish S., Robertson H. M., et al. , 2006.  Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16: 1352–1365. PubMed PMC

Scott J. G., Warren W. C., Beukeboom L. W., Bopp D., Clark A. G., et al. , 2014.  Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 15: 466. PubMed PMC

Schmid B., Helfrich-Forster C., Yoshii T., 2011.  A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J. Biol. Rhythms 26: 464–467. PubMed

Sharma A., Heinze S. D., Wu Y., Kohlbrenner T., Morilla I., et al. , 2017.  Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science 356: 642–645. PubMed

Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., et al. , 1998.  The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95: 681–692. PubMed

Syrova Z., Dolezel D., Saumann I., Hodkova M., 2003.  Photoperiodic regulation of diapause in linden bugs: are period and clock genes involved? Cell. Mol. Life Sci. 60: 2510–2515. PubMed PMC

Tomioka K., Uryu O., Kamae Y., Umezaki Y., Yoshii T., 2012.  Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review. J. Comp. Physiol. B 182: 729–740. PubMed

Vanin S., Bhutani S., Montelli S., Menegazzi P., Green E. W., et al. , 2012.  Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484: 371–375. PubMed

Yuan Q., Metterville D., Briscoe A. D., Reppert S. M., 2007.  Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24: 948–955. PubMed

Zavodska R., Fexova S., von Wowern G., Han G. B., Dolezel D., et al. , 2012.  Is the sex communication of two pyralid moths, Plodia interpunctella and Ephestia kuehniella, under circadian clock regulation? J. Biol. Rhythms 27: 206–216. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...