• This record comes from PubMed

Impact of automated ICA-based denoising of fMRI data in acute stroke patients

. 2017 ; 16 () : 23-31. [epub] 20170630

Language English Country Netherlands Media electronic-ecollection

Document type Journal Article

Grant support
Wellcome Trust - United Kingdom
OSRP1/1006 The Dunhill Medical Trust - United Kingdom

Links

PubMed 28736698
PubMed Central PMC5508492
DOI 10.1016/j.nicl.2017.06.033
PII: S2213-1582(17)30164-X
Knihovny.cz E-resources

Different strategies have been developed using Independent Component Analysis (ICA) to automatically de-noise fMRI data, either focusing on removing only certain components (e.g. motion-ICA-AROMA, Pruim et al., 2015a) or using more complex classifiers to remove multiple types of noise components (e.g. FIX, Salimi-Khorshidi et al., 2014 Griffanti et al., 2014). However, denoising data obtained in an acute setting might prove challenging: the presence of multiple noise sources may not allow focused strategies to clean the data enough and the heterogeneity in the data may be so great to critically undermine complex approaches. The purpose of this study was to explore what automated ICA based approach would better cope with these limitations when cleaning fMRI data obtained from acute stroke patients. The performance of a focused classifier (ICA-AROMA) and a complex classifier (FIX) approaches were compared using data obtained from twenty consecutive acute lacunar stroke patients using metrics determining RSN identification, RSN reproducibility, changes in the BOLD variance, differences in the estimation of functional connectivity and loss of temporal degrees of freedom. The use of generic-trained FIX resulted in misclassification of components and significant loss of signal (< 80%), and was not explored further. Both ICA-AROMA and patient-trained FIX based denoising approaches resulted in significantly improved RSN reproducibility (p < 0.001), localized reduction in BOLD variance consistent with noise removal, and significant changes in functional connectivity (p < 0.001). Patient-trained FIX resulted in higher RSN identifiability (p < 0.001) and wider changes both in the BOLD variance and in functional connectivity compared to ICA-AROMA. The success of ICA-AROMA suggests that by focusing on selected components the full automation can deliver meaningful data for analysis even in population with multiple sources of noise. However, the time invested to train FIX with appropriate patient data proved valuable, particularly in improving the signal-to-noise ratio.

See more in PubMed

Andrews R.J. Transhemispheric diaschisis. A review and comment. Stroke. 1991;22:943–949. PubMed

Beckmann C.F., Mackay C.E., Filippini N., Smith S.M. OHBM; 2009. Group Comparison of Resting-state FMRI Data Using Multi-subject ICA and Dual Regression.

Beckmann C.F., Smith S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging. 2004;23:137–152. PubMed

Bhaganagarapu K., Jackson G.D., Abbott D.F. An automated method for identifying artifact in independent component analysis of resting-state FMRI. Front. Hum. Neurosci. 2013;7:343. PubMed PMC

Birn R.M., Diamond J.B., Smith M.A., Bandettini P.A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage. 2006;31:1536–1548. PubMed

Birn R.M., Molloy E.K., Patriat R. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage. 2013;83:550–558. PubMed PMC

Caballero-Gaudes C., Reynolds R.C. Methods for cleaning the BOLD fMRI signal. NeuroImage. 2016 PubMed PMC

Dagli M.S., Ingeholm J.E., Haxby J.V. Localization of cardiac-induced signal change in fMRI. NeuroImage. 1999;9:407–415. PubMed

De Martino F., Gentile F., Esposito F. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. NeuroImage. 2007;34:177–194. PubMed

Engstrom G., Hedblad B., Juul-Moller S., Tyden P., Janzon L. Cardiac arrhythmias and stroke: increased risk in men with high frequency of atrial ectopic beats. Stroke. 2000;31:2925–2929. PubMed

Filippini N., MacIntosh B.J., Hough M.G. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U. S. A. 2009;106:7209–7214. PubMed PMC

Friston K.J., Williams S., Howard R., Frackowiak R.S., Turner R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 1996;35:346–355. PubMed

Glover G.H., Li T.Q., Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 2000;44:162–167. PubMed

Griffanti L., Rolinski M., Szewczyk-Krolikowski K. Challenges in the reproducibility of clinical studies with resting state fMRI: an example in early Parkinson's disease. NeuroImage. 2016;124:704–713. PubMed PMC

Griffanti L., Salimi-Khorshidi G., Beckmann C.F. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage. 2014;95:232–247. PubMed PMC

Kelly R.E., Jr., Alexopoulos G.S., Wang Z. Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J. Neurosci. Methods. 2010;189:233–245. PubMed PMC

Khalili-Mahani N., Chang C., van Osch M.J. The impact of “physiological correction” on functional connectivity analysis of pharmacological resting state fMRI. NeuroImage. 2013;65:499–510. PubMed

Kochiyama T., Morita T., Okada T., Yonekura Y., Matsumura M., Sadato N. Removing the effects of task-related motion using independent-component analysis. NeuroImage. 2005;25:802–814. PubMed

Kundu P., Inati S.J., Evans J.W., Luh W.M., Bandettini P.A. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage. 2012;60:1759–1770. PubMed PMC

Kunz A., Iadecola C. Cerebral vascular dysregulation in the ischemic brain. Handb. Clin. Neurol. 2009;92:283–305. PubMed PMC

Liebeskind D.S. Collateral circulation. Stroke. 2003;34:2279–2284. PubMed

McKeown M., Hu Y.J., Jane Wang Z. ICA denoising for event-related fMRI studies. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005;1:157–161. PubMed

Nogues M.A., Benarroch E. Abnormalities of respiratory control and the respiratory motor unit. Neurologist. 2008;14:273–288. PubMed

Ovadia-Caro S., Margulies D.S., Villringer A. The value of resting-state functional magnetic resonance imaging in stroke. Stroke. 2014;45:2818–2824. PubMed

Pedersen P.M., Jorgensen H.S., Nakayama H., Raaschou H.O., Olsen T.S. Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol. 1995;38:659–666. PubMed

Perlbarg V., Bellec P., Anton J.L., Pelegrini-Issac M., Doyon J., Benali H. CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. Magn. Reson. Imaging. 2007;25:35–46. PubMed

Power J.D. A simple but useful way to assess fMRI scan qualities. NeuroImage. 2017;154:150–158. PubMed PMC

Pruim R.H., Mennes M., Buitelaar J.K., Beckmann C.F. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage. 2015;112:278–287. PubMed

Pruim R.H., Mennes M., van Rooij D., Llera A., Buitelaar J.K., Beckmann C.F. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage. 2015;112:267–277. PubMed

Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37:1083–1090. (discussion 97-9) PubMed

Rummel C., Verma R.K., Schopf V. Time course based artifact identification for independent components of resting-state FMRI. Front. Hum. Neurosci. 2013;7:214. PubMed PMC

Salimi-Khorshidi G., Douaud G., Beckmann C.F., Glasser M.F., Griffanti L., Smith S.M. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage. 2014;90:449–468. PubMed PMC

Shmueli K., van Gelderen P., de Zwart J.A. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage. 2007;38:306–320. PubMed PMC

Smith S.M., Fox P.T., Miller K.L. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U. S. A. 2009;106:13040–13045. PubMed PMC

Stone J.V., Porrill J., Porter N.R., Wilkinson I.D. Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. NeuroImage. 2002;15:407–421. PubMed

Storti S.F., Formaggio E., Nordio R. Automatic selection of resting-state networks with functional magnetic resonance imaging. Front. Neurosci. 2013;7:72. PubMed PMC

Thomas C.G., Harshman R.A., Menon R.S. Noise reduction in BOLD-based fMRI using component analysis. NeuroImage. 2002;17:1521–1537. PubMed

Tohka J., Foerde K., Aron A.R., Tom S.M., Toga A.W., Poldrack R.A. Automatic independent component labeling for artifact removal in fMRI. NeuroImage. 2008;39:1227–1245. PubMed PMC

Webb A.J., Rothwell P.M. Magnetic resonance imaging measurement of transmission of arterial pulsation to the brain on propranolol versus amlodipine. Stroke. 2016;47:1669–1672. PubMed PMC

Windischberger C., Langenberger H., Sycha T. On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn. Reson. Imaging. 2002;20:575–582. PubMed

Yan C.G., Cheung B., Kelly C. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage. 2013;76:183–201. PubMed PMC

Yan C.G., Craddock R.C., He Y., Milham M.P. Addressing head motion dependencies for small-world topologies in functional connectomics. Front. Hum. Neurosci. 2013;7:910. PubMed PMC

Zou Q., Wu C.W., Stein E.A., Zang Y., Yang Y. Static and dynamic characteristics of cerebral blood flow during the resting state. NeuroImage. 2009;48:515–524. PubMed PMC

Zuo X.N., Xing X.X. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci. Biobehav. Rev. 2014;45:100–118. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...