• This record comes from PubMed

ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation

. 2018 May ; 32 (5) : 1070-1080. [epub] 20180202

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Practice Guideline, Research Support, Non-U.S. Gov't, Review

Links

PubMed 29467486
PubMed Central PMC5940638
DOI 10.1038/s41375-017-0007-7
PII: 10.1038/s41375-017-0007-7
Knihovny.cz E-resources

In chronic lymphocytic leukemia (CLL), TP53 gene defects, due to deletion of the 17p13 locus and/or mutation(s) within the TP53 gene, are associated with resistance to chemoimmunotherapy and a particularly dismal clinical outcome. On these grounds, analysis of TP53 aberrations has been incorporated into routine clinical diagnostics to improve patient stratification and optimize therapeutic decisions. The predictive implications of TP53 aberrations have increasing significance in the era of novel targeted therapies, i.e., inhibitors of B-cell receptor (BcR) signaling and anti-apoptotic BCL2 family members, owing to their efficacy in patients with TP53 defects. In this report, the TP53 Network of the European Research Initiative on Chronic Lymphocytic Leukemia (ERIC) presents updated recommendations on the methodological approaches for TP53 mutation analysis. Moreover, it provides guidance to ensure that the analysis is performed in a timely manner for all patients requiring treatment and that the data is interpreted and reported in a consistent, standardized, and accurate way. Since next-generation sequencing technologies are gaining prominence within diagnostic laboratories, this report also offers advice and recommendations for the interpretation of TP53 mutation data generated by this methodology.

Central European Institute of Technology Masaryk University Brno Czech Republic

Centre for Cancer Research and Cell Biology Queen's University Belfast Belfast UK

Centro de Investigación del Cancer and Centro de Investigación Biomédica en Red de Cáncer University of Salamanca Salamanca Spain

Department of Haematology Hospital de la Santa Creu 1 Sant Pau Autonomous University of Barcelona Barcelona Spain

Department of Hematology Academic Medical Center Amsterdam The Netherlands

Department of Hematology Hôpital Pitié Salpêtière AP HP Sorbonne Universités UPMC University Paris France

Department of Hematology Rigshospitalet Copenhagen Denmark

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University Uppsala Sweden

Department of Internal Medicine 3 Ulm University Ulm Germany

Department of Internal Medicine Hematology and Oncology University Hospital Brno and Medical Faculty Masaryk University Brno Czech Republic

Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden

Department of Oncology Pathology Karolinska Institutet Cancer Center Karolinska Stockholm Sweden

Division of Experimental Oncology IRCCS San Raffaele Scientific Institute Università Vita Salute San Raffaele Milan Italy

Division of Haematology Department of Translational Medicine University of Eastern Piedmont Novara Italy

Division of Hematology University Hospital Zürich University of Zürich Zürich Switzerland

Hematology Oncology Institute of Southern Switzerland Institute of Oncology Research Bellinzona Switzerland

INSERM U1138 Centre de Recherche des Cordeliers Paris France

Institute of Applied Biosciences CERTH Thessaloniki Greece

Université Pierre et Marie Curie Paris France

See more in PubMed

Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74. doi: 10.1016/S0140-6736(10)61381-5. PubMed DOI

Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner K, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54. doi: 10.1182/blood-2014-01-546150. PubMed DOI

Fischer K, Cramer P, Busch R, Böttcher S, Bahlo J, Schubert J, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30:3209–16. doi: 10.1200/JCO.2011.39.2688. PubMed DOI

Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56. doi: 10.1182/blood-2007-06-093906. PubMed DOI PMC

Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6. doi: 10.1056/NEJM200012283432602. PubMed DOI

Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28:4473–9. doi: 10.1200/JCO.2009.27.8762. PubMed DOI

Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15:995–1004. doi: 10.1158/1078-0432.CCR-08-1630. PubMed DOI

Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A, et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood. 2008;112:3322–9. doi: 10.1182/blood-2008-04-154070. PubMed DOI

Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood. 2009;114:5307–14. doi: 10.1182/blood-2009-07-234708. PubMed DOI

Zainuddin N, Murray F, Kanduri M, Gunnarsson R, Smedby KE, Enblad G, et al. TP53 mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk Res. 2011;35:272–4. doi: 10.1016/j.leukres.2010.08.023. PubMed DOI

Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia. 2009;23:117–24. doi: 10.1038/leu.2008.274. PubMed DOI

Zenz T, Häbe S, Denzel T, Mohr J, Winkler D, Bühler A, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114:2589–97. doi: 10.1182/blood-2009-05-224071. PubMed DOI

Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31:705–11. doi: 10.1038/leu.2016.263. PubMed DOI

Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29:2223–9. doi: 10.1200/JCO.2010.32.0838. PubMed DOI

Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54. doi: 10.1182/blood-2014-01-546150. PubMed DOI

Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17:768–78. doi: 10.1016/S1470-2045(16)30019-5. PubMed DOI

O’Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17:1409–18. doi: 10.1016/S1470-2045(16)30212-1. PubMed DOI

Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123:3390–7. doi: 10.1182/blood-2013-11-535047. PubMed DOI PMC

Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D, Kater AP, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia. 2012;26:1458–61. doi: 10.1038/leu.2012.25. PubMed DOI

Malcikova J, Stano-Kozubik K, Tichy B, Kantorova B, Pavlova S, Tom N, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29:877–85. doi: 10.1038/leu.2014.297. PubMed DOI PMC

Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26. doi: 10.1016/j.cell.2013.01.019. PubMed DOI PMC

Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1 and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127:2122–30. doi: 10.1182/blood-2015-07-659144. PubMed DOI PMC

Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Famà R, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123:2139–47. doi: 10.1182/blood-2013-11-539726. PubMed DOI PMC

Zenz T, Habe S, Denzel T, Winkler D, Dohner H, Stilgenbauer S. How little is too much? p53 inactivation: from laboratory cutoff to biological basis of chemotherapy resistance. Leukemia. 2008;22:2257–8. doi: 10.1038/leu.2008.114. PubMed DOI

Lin MT, Mosier SL, Thiess M, Beierl KF, Debeljak M, Tseng LH, et al. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. Am J Clin Pathol. 2014;141:856–66. doi: 10.1309/AJCPMWGWGO34EGOD. PubMed DOI PMC

Oh E, Choi YL, Kwon MJ, Kim RN, Kim YJ, Song JY, et al. Comparison of accuracy of whole-exome sequencing with formalin-fixed paraffin-embedded and fresh frozen tissue samples. PLoS ONE. 2015;10:e0144162. doi: 10.1371/journal.pone.0144162. PubMed DOI PMC

Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, et al. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol. 1999;155:1467–71. doi: 10.1016/S0002-9440(10)65461-2. PubMed DOI PMC

Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci USA. 2012;109:9551–6. doi: 10.1073/pnas.1200019109. PubMed DOI PMC

Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol. 2015;16:665–77. doi: 10.1038/nrm4063. PubMed DOI

Leroy B, Ballinger ML, Baran-Marszak F, Bond GL, Braithwaite A, Concin N, et al. Recommended guidelines for validation, quality control, and reporting of TP53 variants in clinical practice. Cancer Res. 2017;77:1250–60. doi: 10.1158/1538-7445.AM2017-1250. PubMed DOI PMC

Pal K, Bystry V, Reigl T, Demko M, Krejci A, Touloumenidou T, et al. GLASS: assisted and standardized assessment of gene variations from Sanger sequence trace data. Bioinformatics. 2017;33:3802–4. doi: 10.1093/bioinformatics/btx423. PubMed DOI

Kantorova B, Malcikova J, Smardova J, Pavlova S, Trbusek M, Tom N, et al. TP53 mutation analysis in chronic lymphocytic leukemia: comparison of different detection methods. Tumour Biol. 2015;36:3371–80. doi: 10.1007/s13277-014-2971-0. PubMed DOI

Lazarian G, Tausch E, Eclache V, Sebaa A, Bianchi V, Letestu R, et al. TP53 mutations are early events in chronic lymphocytic leukemia disease progression and precede evolution to complex karyotypes. Int J Cancer. 2016;139:1759–63. doi: 10.1002/ijc.30222. PubMed DOI

Sutton LA, Ljungström V, Mansouri L, Young E, Cortese D, Navrkalova V, et al. Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting. Haematologica. 2015;100:370–6. doi: 10.3324/haematol.2014.109777. PubMed DOI PMC

Jethwa A, Hüllein J, Stolz T, Blume C, Sellner L, Jauch A, et al. Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia. Br J Haematol. 2013;163:496–500. doi: 10.1111/bjh.12539. PubMed DOI

Akbari M, Hansen MD, Halgunset J, Skorpen F, Krokan HE. Low copy number DNA template can render polymerase chain reaction error prone in a sequence-dependent manner. J Mol Diagn. 2005;7:36–9. doi: 10.1016/S1525-1578(10)60006-2. PubMed DOI PMC

Hiatt JB, Pritchard CC, Salipante SJ, O’Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013;23:843–54. doi: 10.1101/gr.147686.112. PubMed DOI PMC

Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–5. doi: 10.1073/pnas.1105422108. PubMed DOI PMC

Chen G, Mosier S, Gocke CD, Lin MT, Eshleman JR. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Mol Diagn Ther. 2014;18:587–93. doi: 10.1007/s40291-014-0115-2. PubMed DOI PMC

den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37:564–9. doi: 10.1002/humu.22981. PubMed DOI

Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37:865–76. doi: 10.1002/humu.23035. PubMed DOI

Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014;35:672–88. doi: 10.1002/humu.22552. PubMed DOI

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91. doi: 10.1038/nature19057. PubMed DOI PMC

Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33:357–65. doi: 10.1038/ng1093. PubMed DOI

Kochethu G, Delgado J, Pepper C, Starczynski J, Hooper L, Krishnan S, et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res. 2006;30:1113–8. doi: 10.1016/j.leukres.2005.12.014. PubMed DOI

Majid A, Richards T, Dusanjh P, Kennedy DB, Miall F, Gesk S, et al. TP53 codon 72 polymorphism in patients with chronic lymphocytic leukaemia: identification of a subgroup with mutated IGHV genes and poor clinical outcome. Br J Haematol. 2011;153:533–5. doi: 10.1111/j.1365-2141.2010.08484.x. PubMed DOI

Dong HJ, Fang C, Wang L, Fan L, Xu J, Wu JZ, et al. TP53 Pro72 allele potentially increases the poor prognostic significance of TP53 mutation in chronic lymphocytic leukemia. Med Oncol. 2014;31:908. doi: 10.1007/s12032-014-0908-5. PubMed DOI

Sturm I, Bosanquet AG, Hummel M, Dörken B, Daniel PT. In B-CLL, the codon 72 polymorphic variants of p53 are not related to drug resistance and disease prognosis. BMC Cancer. 2005;5:105. doi: 10.1186/1471-2407-5-105. PubMed DOI PMC

Soussi T, Leroy B, Taschner PE. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum Mutat. 2014;35:766–78. doi: 10.1002/humu.22561. PubMed DOI

Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SFv2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19:249–55. doi: 10.1038/gim.2016.190. PubMed DOI

Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74. doi: 10.1038/gim.2013.73. PubMed DOI PMC

Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014;156:1324–35. doi: 10.1016/j.cell.2014.01.051. PubMed DOI

Varley JM, Attwooll C, White G, McGown G, Thorncroft M, Kelsey AM, et al. Characterization of germline TP53 splicing mutations and their genetic and functional analysis. Oncogene. 2001;20:2647–54. doi: 10.1038/sj.onc.1204369. PubMed DOI

Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30. doi: 10.1038/nature15395. PubMed DOI PMC

Soussi T, Taschner PE, Samuels Y. Synonymous somatic variants in human cancer are not infamous: a plea for full disclosure in databases and publications. Hum Mutat. 2017;38:339–42. doi: 10.1002/humu.23163. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Detection of clinically relevant variants in the TP53 gene below 10% allelic frequency: A multicenter study by ERIC, the European Research Initiative on CLL

. 2025 Jan ; 9 (1) : e70065. [epub] 20250120

Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities

. 2024 Jul ; 8 (7) : e113. [epub] 20240721

ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-2024 update

. 2024 Jul ; 38 (7) : 1455-1468. [epub] 20240516

Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY

. 2023 Feb ; 37 (2) : 339-347. [epub] 20221224

The EHA Research Roadmap: Malignant Lymphoid Diseases

. 2022 Jun ; 6 (6) : e726. [epub] 20220519

Evolution of TP53 abnormalities during CLL disease course is associated with telomere length changes

. 2022 Feb 03 ; 22 (1) : 137. [epub] 20220203

Low-burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options

. 2021 Dec 23 ; 138 (25) : 2670-2685.

Chemoimmunotherapy in the First-Line Treatment of Chronic Lymphocytic Leukaemia: Dead Yet, or Alive and Kicking?

. 2021 Jun 23 ; 13 (13) : . [epub] 20210623

Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene

. 2021 May ; 28 (5) : 1477-1492. [epub] 20201130

Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study

. 2021 Mar 01 ; 106 (3) : 682-691. [epub] 20210301

Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a multi-center study

. 2021 Jan 01 ; 106 (1) : 87-97. [epub] 20210101

Performance of anti-CD19 chimeric antigen receptor T cells in genetically defined classes of chronic lymphocytic leukemia

. 2020 Mar ; 8 (1) : .

Standardization of Sequencing Coverage Depth in NGS: Recommendation for Detection of Clonal and Subclonal Mutations in Cancer Diagnostics

. 2019 ; 9 () : 851. [epub] 20190904

European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms

. 2019 Aug ; 33 (8) : 1851-1867. [epub] 20190129

Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact

. 2019 Mar 14 ; 133 (11) : 1205-1216. [epub] 20190102

TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics

. 2018 Dec ; 103 (12) : 1956-1968. [epub] 20181115

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...