• This record comes from PubMed

On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs

. 2019 Jan ; 89 () : 237-248. [epub] 20180919

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The present study describes the lubrication mechanisms within artificial hip joints considering real conformity of rubbing surfaces. Part I is focused on hard-on-soft material combination, introducing the fundamentals of lubrication performance. These pairs have not been explored in terms of in situ observation before. The contact of metal femoral component articulating with transparent polymer acetabular cup was studied using a hip joint simulator. The film formation was evaluated by fluorescent microscopy method. Various model synovial fluids were employed while the key constituents, i.e. albumin, γ-globulin, and hyaluronic acid were fluorescently stained to determine its role in film formation process. Two types of the tests were performed. The first dynamic test aimed on the development of film thickness under constant load during motor driven swinging motion mimicking flexion-extension. Subsequently, a combined test was designed consisting of the three phases; static part with loading/unloading phase (1), pendulum swinging till spontaneous damping of the motion due to friction (2), and static observation under the constant load (3). The results clearly confirmed that the interaction of constituents of synovial fluid plays a dominant role and substantially influences the lubrication conditions. In particular, the main finding coming from the present study is that γ-globulin together with hyaluronic acid form relatively thin stable boundary layer enabling the enhanced adsorption of albumin, thus increasing the lubricant film. Part II of the present study is focused on hard-on-hard pairs while the main differences in film formation process are highlighted among others.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...