Quantitative insights into the cyanobacterial cell economy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16-026/0008413
Ministerstvo Školství, Mládeže a Tělovýchovy - International
18-24397S
Grantová Agentura České Republiky - International
CRC1208
Deutsche Forschungsgemeinschaft - International
14-14-00904
Russian Science Foundation - International
FKZ 0316192
Bundesministerium für Bildung und Forschung - International
PubMed
30714903
PubMed Central
PMC6391073
DOI
10.7554/elife.42508
PII: 42508
Knihovny.cz E-zdroje
- Klíčová slova
- computational biology, growth model, infectious disease, light limitation, microbiology, photoinhibition, phototrophic growth laws, proteome allocation, resource allocation, systems biology,
- MeSH
- biotechnologie MeSH
- fotosyntéza genetika MeSH
- fototrofní procesy genetika MeSH
- proteom genetika MeSH
- sinice genetika růst a vývoj metabolismus MeSH
- světlo MeSH
- Synechocystis genetika růst a vývoj MeSH
- velikost buňky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological acclimations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial acclimations to different growth rates have implications to understand and optimize photosynthetic productivity.
Department of Applied Physics Polytechnic University of Valencia Valencia Spain
Laboratory of Adaptive Biotechnologies Global Change Research Institute CAS Brno Czech Republic
Molecular Proteomics Laboratory BMFZ Heinrich Heine Universität Düsseldorf Düsseldorf Germany
Timiryazev Institute of Plant Physiology Russian Academy of Sciences Moscow Russian Federation
Zobrazit více v PubMed
Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, Gopalakrishnan S, He L, Maranas CD, Pakrasi HB, Allen DK, Tang YJ. Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnology for Biofuels. 2017;10:273. doi: 10.1186/s13068-017-0958-y. PubMed DOI PMC
Al-Haj L, Lui Y, Abed R, Gomaa M, Purton S. Cyanobacteria as chassis for industrial biotechnology: progress and prospects. Life. 2016;6:e42. doi: 10.3390/life6040042. PubMed DOI PMC
Aldea M, Jenkins K, Csikász-Nagy A. Growth rate as a direct regulator of the start network to set cell size. Frontiers in Cell and Developmental Biology. 2017;5:57. doi: 10.3389/fcell.2017.00057. PubMed DOI PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. Nature Genetics. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Beck C, Knoop H, Steuer R. Modules of co-occurrence in the cyanobacterial pan-genome reveal functional associations between groups of ortholog genes. PLOS Genetics. 2018;14:e1007239. doi: 10.1371/journal.pgen.1007239. PubMed DOI PMC
Berman HM. The protein data bank. Nucleic Acids Research. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Bernstein HC, McClure RS, Hill EA, Markillie LM, Chrisler WB, Romine MF, McDermott JE, Posewitz MC, Bryant DA, Konopka AE, Fredrickson JK, Beliaev AS. Unlocking the constraints of cyanobacterial productivity: acclimations enabling ultrafast growth. mBio. 2016;7 doi: 10.1128/mBio.00949-16. PubMed DOI PMC
Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS Journal. 2015;282:2029–2044. doi: 10.1111/febs.13258. PubMed DOI PMC
Bremer H, Dennis PP. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus. 2008;3 doi: 10.1128/ecosal.5.2.3. PubMed DOI
Brown CM, MacKinnon JD, Cockshutt AM, Villareal TA, Campbell DA. Flux capacities and acclimation costs in trichodesmium from the gulf of Mexico. Marine Biology. 2008;154:413–422. doi: 10.1007/s00227-008-0933-z. DOI
Burnap RL. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria. Frontiers in Bioengineering and Biotechnology. 2015;3:e1. doi: 10.3389/fbioe.2015.00001. PubMed DOI PMC
Cano M, Holland SC, Artier J, Burnap RL, Ghirardi M, Morgan JA, Yu J. Glycogen synthesis and metabolite overflow contribute to energy balancing in cyanobacteria. Cell Reports. 2018;23:667–672. doi: 10.1016/j.celrep.2018.03.083. PubMed DOI
Červený J, Šetlík I, Trtílek M, Nedbal L. Photobioreactor for cultivation and real-time,in-situ measurement of o2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Engineering in Life Sciences. 2009;9:247–253. doi: 10.1002/elsc.200800123. DOI
Cordara A, Re A, Pagliano C, Van Alphen P, Pirone R, Saracco G, Branco Dos Santos F, Hellingwerf K, Vasile N. Analysis of the light intensity dependence of the growth of synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ. 2018;6:e5256. doi: 10.7717/peerj.5256. PubMed DOI PMC
Dornmair K, Jähnig F, O P. Fast measurement of galactoside transport by lactose permease. The Journal of Biological Chemistry. 1989;26:342–346. PubMed
Du W, Jongbloets JA, Pineda Hernández H, Bruggeman FJ, Hellingwerf KJ, Branco dos Santos F. Photonfluxostat: a method for light-limited batch cultivation of cyanobacteria at different, yet constant, growth rates. Algal Research. 2016;20:118–125. doi: 10.1016/j.algal.2016.10.004. DOI
Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature. 2017;551:119–123. doi: 10.1038/nature24299. PubMed DOI PMC
Faizi M, Zavřel T, Loureiro C, Červený J, Steuer R. A model of optimal protein allocation during phototrophic growth. Biosystems. 2018;166:26–36. doi: 10.1016/j.biosystems.2018.02.004. PubMed DOI
Fujisawa T, Narikawa R, Maeda SI, Watanabe S, Kanesaki Y, Kobayashi K, Nomata J, Hanaoka M, Watanabe M, Ehira S, Suzuki E, Awai K, Nakamura Y. CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Research. 2017;45:D551–D554. doi: 10.1093/nar/gkw1131. PubMed DOI PMC
Golden SS. Light-responsive gene expression in cyanobacteria. Journal of Bacteriology. 1995;177:1651–1654. doi: 10.1128/jb.177.7.1651-1654.1995. PubMed DOI PMC
Hedengren JD, Shishavan RA, Powell KM, Edgar TF. Nonlinear modeling, estimation and predictive control in APMonitor. Computers & Chemical Engineering. 2014;70:133–148. doi: 10.1016/j.compchemeng.2014.04.013. DOI
Ikeuchi M, Tabata S. Synechocystis sp. PCC 6803 - a useful tool in the study of the genetics of cyanobacteria. Photosynthesis Research. 2001;70:73–83. doi: 10.1023/A:1013887908680. PubMed DOI
Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, Forsström B, Uhlén M, Käll L, Hudson EP. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Reports. 2018;25:478–486. doi: 10.1016/j.celrep.2018.09.040. PubMed DOI
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. Reports on Progress in Physics. 2018;81:056601. doi: 10.1088/1361-6633/aaa628. PubMed DOI PMC
Kafri M, Metzl-Raz E, Jona G, Barkai N. The cost of protein production. Cell Reports. 2016;14:22–31. doi: 10.1016/j.celrep.2015.12.015. PubMed DOI PMC
Keren N, Aurora R, Pakrasi HB. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiology. 2004;135:1666–1673. doi: 10.1104/pp.104.042770. PubMed DOI PMC
Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, Dampier W, Dessimoz C, Flick P, Tang H. GOATOOLS: a python library for gene ontology analyses. Scientific Reports. 2018;8:10872. doi: 10.1038/s41598-018-28948-z. PubMed DOI PMC
Klumpp S, Zhang Z, Hwa T. Growth rate-dependent global effects on gene expression in bacteria. Cell. 2009;139:1366–1375. doi: 10.1016/j.cell.2009.12.001. PubMed DOI PMC
Klumpp S, Scott M, Pedersen S, Hwa T. Molecular crowding limits translation and cell growth. PNAS. 2013;110:16754–16759. doi: 10.1073/pnas.1310377110. PubMed DOI PMC
Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R. Flux balance analysis of cyanobacterial metabolism: the metabolic network of synechocystis sp. PCC 6803. PLOS Computational Biology. 2013;9:e1003081. doi: 10.1371/journal.pcbi.1003081. PubMed DOI PMC
Kumar M, Kulshreshtha J, Singh GP. Growth and biopigment accumulation of cyanobacterium spirulina platensis at different light intensities and temperature. Brazilian Journal of Microbiology. 2011;42:1128–1135. doi: 10.1590/S1517-83822011000300034. PubMed DOI PMC
Lea-Smith DJ, Ortiz-Suarez ML, Lenn T, Nürnberg DJ, Baers LL, Davey MP, Parolini L, Huber RG, Cotton CA, Mastroianni G, Bombelli P, Ungerer P, Stevens TJ, Smith AG, Bond PJ, Mullineaux CW, Howe CJ. Hydrocarbons are essential for optimal cell size, division, and growth of cyanobacteria. Plant Physiology. 2016;172:1928–1940. doi: 10.1104/pp.16.01205. PubMed DOI PMC
Liebermeister W, Noor E, Flamholz A, Davidi D, Bernhardt J, Milo R. Visual account of protein investment in cellular functions. PNAS. 2014;111:8488–8493. doi: 10.1073/pnas.1314810111. PubMed DOI PMC
Maier T, Schmidt A, Güell M, Kühner S, Gavin AC, Aebersold R, Serrano L. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Molecular Systems Biology. 2011;7:511. doi: 10.1038/msb.2011.38. PubMed DOI PMC
Maitra A, Dill KA. Bacterial growth laws reflect the evolutionary importance of energy efficiency. PNAS. 2015;112:406–411. doi: 10.1073/pnas.1421138111. PubMed DOI PMC
Mangan NM, Brenner MP. Systems analysis of the CO2 concentrating mechanism in cyanobacteria. eLife. 2014;3:e02043. doi: 10.7554/eLife.02043. PubMed DOI PMC
Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M. Mutagenesis at two distinct Phosphate-Binding sites unravels their differential roles in regulation of rubisco activation and catalysis. Journal of Bacteriology. 2005;187:4222–4228. doi: 10.1128/JB.187.12.4222-4228.2005. PubMed DOI PMC
Matsumoto Y, Murakami Y, Tsuru S, Ying BW, Yomo T. Growth rate-coordinated transcriptome reorganization in bacteria. BMC Genomics. 2013;14:808. doi: 10.1186/1471-2164-14-808. PubMed DOI PMC
Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N. Principles of cellular resource allocation revealed by condition-dependent proteome profiling. eLife. 2017;6:e28034. doi: 10.7554/eLife.28034. PubMed DOI PMC
Moal G, Lagoutte B. Photo-induced electron transfer from photosystem I to NADP+: characterization and tentative simulation of the in vivo environment. Biochimica Et Biophysica Acta (BBA) - Bioenergetics. 2012;1817:1635–1645. doi: 10.1016/j.bbabio.2012.05.015. PubMed DOI
Molenaar D, van Berlo R, de Ridder D, Teusink B. Shifts in growth strategies reflect tradeoffs in cellular economics. Molecular Systems Biology. 2009;5:323. doi: 10.1038/msb.2009.82. PubMed DOI PMC
Monshupanee T, Incharoensakdi A. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium synechocystis sp. PCC 6803. Journal of Applied Microbiology. 2014;116:830–838. doi: 10.1111/jam.12409. PubMed DOI
Morris JN, Eaton-Rye JJ, Summerfield TC. Phenotypic variation in wild-type substrains of the model cyanobacterium Synechocystis sp. PCC 6803. New Zealand Journal of Botany. 2017;55:25–35. doi: 10.1080/0028825X.2016.1231124. DOI
Mueller TJ, Ungerer JL, Pakrasi HB, Maranas CD. Identifying the metabolic differences of a Fast-Growth phenotype in synechococcus UTEX 2973. Scientific Reports. 2017;7:41569. doi: 10.1038/srep41569. PubMed DOI PMC
Nedbal L, Trtílek M, Cervený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnology and Bioengineering. 2008;100:902–910. doi: 10.1002/bit.21833. PubMed DOI
Neidhardt FC, Ingraham JL, Schaechter M. A Molecular Approach. Sunderland, USA: Sinauer Associates, Inc; 1990. Physiology of the bacterial cell.
Neidhardt FC. Bacterial growth: constant obsession with dN/dt. Journal of Bacteriology. 1999;181:7405–7408. PubMed PMC
Nguyen BT, Rittmann BE. Effects of inorganic carbon and pH on growth kinetics of synechocystis sp. PCC 6803. Algal Research. 2016;19:363–369. doi: 10.1016/j.algal.2016.03.011. DOI
Omata T, Takahashi Y, Yamaguchi O, Nishimura T. Structure, function and regulation of the cyanobacterial high-affinity bicarbonate transporter, BCT1. Functional Plant Biology. 2002;29:151–159. doi: 10.1071/PP01215. PubMed DOI
Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K, Vilu R. Proteome reallocation in Escherichia coli with increasing specific growth rate. Molecular BioSystems. 2015;11:1184–1193. doi: 10.1039/C4MB00721B. PubMed DOI
Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research. 1980;38:687–701.
Poschmann G, Seyfarth K, Besong Agbo D, Klafki HW, Rozman J, Wurst W, Wiltfang J, Meyer HE, Klingenspor M, Stühler K. High-fat diet induced isoform changes of the parkinson's disease protein DJ-1. Journal of Proteome Research. 2014;13:2339–2351. doi: 10.1021/pr401157k. PubMed DOI
Reimers A-M, Knoop H, Bockmayr A, Steuer R. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. PNAS. 2017;114:E6457–E6465. doi: 10.1073/pnas.1617508114. PubMed DOI PMC
Rosana AR, Ventakesh M, Chamot D, Patterson-Fortin LM, Tarassova O, Espie GS, Owttrim GW. Inactivation of a low temperature-induced RNA helicase in synechocystis sp. PCC 6803: physiological and morphological consequences. Plant and Cell Physiology. 2012;53:646–658. doi: 10.1093/pcp/pcs020. PubMed DOI
Rügen M, Bockmayr A, Steuer R. Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Scientific Reports. 2015;5:15247. doi: 10.1038/srep15247. PubMed DOI PMC
Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science. 2010;330:1099–1102. doi: 10.1126/science.1192588. PubMed DOI
Scott M, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Molecular Systems Biology. 2014;10:747. doi: 10.15252/msb.20145379. PubMed DOI PMC
Scott M, Hwa T. Bacterial growth laws and their applications. Current Opinion in Biotechnology. 2011;22:559–565. doi: 10.1016/j.copbio.2011.04.014. PubMed DOI PMC
Shastri AA, Morgan JA. Flux balance analysis of photoautotrophic metabolism. Biotechnology Progress. 2005;21:1617–1626. doi: 10.1021/bp050246d. PubMed DOI
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI
Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order chroococcales) Bacteriological Reviews. 1971;35:171–205. PubMed PMC
Tan X, Hou S, Song K, Georg J, Klähn S, Lu X, Hess WR. The primary transcriptome of the fast-growing cyanobacterium synechococcus elongatus UTEX 2973. Biotechnology for Biofuels. 2018;11:218. doi: 10.1186/s13068-018-1215-8. PubMed DOI PMC
Touloupakis E, Cicchi B, Torzillo G. A bioenergetic assessment of photosynthetic growth of synechocystis sp. PCC 6803 in continuous cultures. Biotechnology for Biofuels. 2015;8:133. doi: 10.1186/s13068-015-0319-7. PubMed DOI PMC
Ungerer J, Lin PC, Chen HY, Pakrasi HB. Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973. mBio. 2018;9:e02327-17. doi: 10.1128/mBio.02327-17. PubMed DOI PMC
UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Research. 2018;46:2699. doi: 10.1093/nar/gky092. PubMed DOI PMC
van Alphen P, Abedini Najafabadi H, Branco dos Santos F, Hellingwerf KJ. Increasing the Photoautotrophic Growth Rate of Synechocystis sp. PCC 6803 by Identifying the Limitations of Its Cultivation. Biotechnology Journal. 2018;13:1700764. doi: 10.1002/biot.201700764. PubMed DOI
Vázquez-Laslop N, Mankin AS. Protein accounting in the cellular economy. Cell. 2014;157:529–531. doi: 10.1016/j.cell.2014.04.002. PubMed DOI PMC
Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Research. 2016;44:11033. doi: 10.1093/nar/gkw880. PubMed DOI PMC
Weiße AY, Oyarzún DA, Danos V, Swain PS. Mechanistic links between cellular trade-offs, gene expression, and growth. PNAS. 2015;112:E1038–E1047. doi: 10.1073/pnas.1416533112. PubMed DOI PMC
Wu H, Jiang H, Liu C, Deng Y. Growth, pigment composition, chlorophyll fluorescence and antioxidant defenses in the red alga gracilaria lemaneiformis (Gracilariales, rhodophyta) under light stress. South African Journal of Botany. 2015;100:27–32. doi: 10.1016/j.sajb.2015.05.017. DOI
Yang Y, Lam V, Adomako M, Simkovsky R, Jakob A, Rockwell NC, Cohen SE, Taton A, Wang J, Lagarias JC, Wilde A, Nobles DR, Brand JJ, Golden SS. Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. PNAS. 2018;115:E12378–E12387. doi: 10.1073/pnas.1812871115. PubMed DOI PMC
Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports. 2015;5 doi: 10.1038/srep08132. PubMed DOI PMC
Zavřel T, Sinetova M, Cervený J. Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protocol. 2015a;5 doi: 10.21769/BioProtoc.1467. DOI
Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Engineering in Life Sciences. 2015b;15:122–132. doi: 10.1002/elsc.201300165. DOI
Zavřel T, Červený J, Knoop H, Steuer R. Optimizing cyanobacterial product synthesis: meeting the challenges. Bioengineered. 2016;7:490–496. doi: 10.1080/21655979.2016.1207017. PubMed DOI PMC
Zavřel T, Očenášová P, Červený J. Phenotypic characterization of synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLOS ONE. 2017;12:e0189130. doi: 10.1371/journal.pone.0189130. PubMed DOI PMC
Zavřel T, Chmelík D, Sinetova MA, Červený J. “Spectrophotometric determination of phycobiliprotein content in cyanobacterium synechocystis,”. Journal of Visualized Experiments. 2018a;139:1–9. PubMed PMC
Zavřel T, Očenášová P, Sinetova M, Červený J. Determination of storage (Starch/Glycogen) and total saccharides content in algae and cyanobacteria by a Phenol-Sulfuric acid method. Bio-Protocol. 2018b;8:e2966. doi: 10.21769/BioProtoc.2966. PubMed DOI PMC
Zerulla K, Ludt K, Soppa J. The ploidy level of synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology. 2016;162:730–739. doi: 10.1099/mic.0.000264. PubMed DOI
A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803
A quantitative description of light-limited cyanobacterial growth using flux balance analysis
Phycobilisome protein ApcG interacts with PSII and regulates energy transfer in Synechocystis
Quantitative models of nitrogen-fixing organisms
Towards a quantitative assessment of inorganic carbon cycling in photosynthetic microorganisms