Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016-2019)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
CAPES/MD
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa - International
Excellence PrF UHK
UHK - International
CEP - Centrální evidence projektů
PubMed
32178264
PubMed Central
PMC7175240
DOI
10.3390/biom10030436
PII: biom10030436
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, new trends in reactivators, organophosphorus compounds, reactivation process, therapeutic potential,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- GPI-vázané proteiny metabolismus MeSH
- lidé MeSH
- oximy chemie terapeutické užití MeSH
- patenty jako téma MeSH
- reaktivátory cholinesterasy * chemie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- ACHE protein, human MeSH Prohlížeč
- GPI-vázané proteiny MeSH
- oximy MeSH
- reaktivátory cholinesterasy * MeSH
Acetylcholinesterase (AChE) is the key enzyme responsible for deactivating the ACh neurotransmitter. Irreversible or prolonged inhibition of AChE, therefore, elevates synaptic ACh leading to serious central and peripheral adverse effects which fall under the cholinergic syndrome spectra. To combat the toxic effects of some AChEI, such as organophosphorus (OP) nerve agents, many compounds with reactivator effects have been developed. Within the most outstanding reactivators, the substances denominated oximes stand out, showing good performance for reactivating AChE and restoring the normal synaptic acetylcholine (ACh) levels. This review was developed with the purpose of covering the new advances in AChE reactivation. Over the past years, researchers worldwide have made efforts to identify and develop novel active molecules. These researches have been moving farther into the search for novel agents that possess better effectiveness of reactivation and broad-spectrum reactivation against diverse OP agents. In addition, the discovery of ways to restore AChE in the aged form is also of great importance. This review will allow us to evaluate the major advances made in the discovery of new acetylcholinesterase reactivators by reviewing all patents published between 2016 and 2019. This is an important step in continuing this remarkable research so that new studies can begin.
Zobrazit více v PubMed
Ganesan K., Raza S., Vijayaraghavan R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010;2:166–178. doi: 10.4103/0975-7406.68498. PubMed DOI PMC
El-Ebiary A.A., Elsharkawy R.E., Soliman N.A., Soliman M.A., Hashem A.A. N -acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial. Basic Clin. Pharmacol. Toxicol. 2016;119:222–227. doi: 10.1111/bcpt.12554. PubMed DOI
Black R.M., Read R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 2013;87:421–437. doi: 10.1007/s00204-012-1005-1. PubMed DOI
Dong H., Weng Y.B., Zhen G.S., Li F.J., Jin A.C., Liu J., Pany S. Clinical emergency treatment of 68 critical patients with severe organophosphorus poisoning and prognosis analysis after rescue. Medicine. 2017;96:9–12. doi: 10.1097/MD.0000000000007237. PubMed DOI PMC
Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI
Terekhov S.S., Palikov V.A., Palikova Y.A., Dyachenko I.A., Shamborant O.G., Smirnov I.V., Masson P., Gabibov A.G. Application of Tetrameric Recombinant Human Butyrylcholinesterase as a Biopharmaceutical for Amelioration of Symptoms of Acute Organophosphate Poisoning. Bull. Exp. Biol. Med. 2017;163:430–435. doi: 10.1007/s10517-017-3821-z. PubMed DOI
Ranjith K.G.K., Nagabhushana S., Ranganatha M., Virupakshappa K. Clinical Pattern and Outcome of Organophosphorus Compound Poisoning. J. Evol. Med. Dent. Sci. 2016;5:3030–3033.
Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. 2017;142:26–40. doi: 10.1111/jnc.14026. PubMed DOI
Li C., Srivastava R.K., Athar M. Biological and environmental hazards associated with exposure to chemical warfare agents: Arsenicals. Ann. N. Y. Acad. Sci. 2016;1378:143–157. doi: 10.1111/nyas.13214. PubMed DOI PMC
Wilson C., Main M.J., Cooper N.J., Briggs M.E., Cooper A.I., Adams D.J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017;8:1914–1922. doi: 10.1039/C7PY00040E. DOI
Silva G.R., Borges I., Figueroa-Villar J.D., De Castro A.T. Defesa química: Histórico, classificação dos agentes de guerra e ação dos neurotóxicos. Quim. Nova. 2012;35:2083–2091. doi: 10.1590/S0100-40422012001000033. DOI
Worek F., Thiermann H., Szinicz L., Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol. 2004;68:2237–2248. doi: 10.1016/j.bcp.2004.07.038. PubMed DOI
Herbert J., Thiermann H., Worek F., Wille T. Precision cut lung slices as test system for candidate therapeutics in organophosphate poisoning. Toxicology. 2017;389:94–100. doi: 10.1016/j.tox.2017.07.011. PubMed DOI
Alencar Filho E.B., Santos A.A., Oliveira B.G. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents. J. Mol. Struct. 2017;1133:338–347. doi: 10.1016/j.molstruc.2016.12.035. DOI
Malfatti M.A., Enright H.A., Be N.A., Kuhn E.A., Hok S., McNerney M.W., Lao V., Nguyen T.H., Lightstone F.C., Carpenter T.S., et al. The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chem. Biol. Interact. 2017;277:159–167. doi: 10.1016/j.cbi.2017.09.016. PubMed DOI PMC
Kuča K., Kassa J. A comparison of the ability of a new bispyridinium oxime—1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J. Enzym. Inhib. Med. Chem. 2003;18:529–535. doi: 10.1080/14756360310001605552. PubMed DOI
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. Sect. Title Toxicol. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI
Quinn D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 1987;87:955–979. doi: 10.1021/cr00081a005. DOI
Patrick G.L., Spencer J. An Introduction to Medicinal Chemistry. 4th ed. Oxford University Press; Oxford, UK: 2009.
Lemke T.L., David A. Williams Foye’s Principles of Medicinal Chemistry. 6th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2007.
Bergmann F., Wilson I.B., Nachmansohn D. Acetylcholinesterase. IX. Structural features determining the inhibition by amino acids and related compounds. J. Biol. Chem. 1950;186:693–703. PubMed
Wilson I.B., Bergmann F. Acetylcholinesterase. VIII. Dissociation constants of the active groups. J. Biol. Chem. 1950;186:683–692. PubMed
Wilson I.B., Bergmann F., Nachmansohn D. Acetylcholinesterase. X. Mechanism of the catalysis of acylation reactions. J. Biol. Chem. 1950;186:781–790. PubMed
Siegel G.J. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 6th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 1999.
De Giacoppo J.O.S., De Lima W.E.A., Kuca K., Da Cunha E.F.F., França T.C.C., De Ramalho T.C. Guerra química: Perspectivas no estudo de reativadores da enzima acetilcolinesterase inibida por organofosforados. Rev. Virtual Quim. 2014;6:653–670.
Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Kovarik Z., Bosak A., Latas T. Exploring the Active Sites of Cholinesterases by Inhibition with Bambuterol and Haloxon. Croat. Chem. Acta. 2003;76:63–67.
Saxena A., Redman A.M.G., Jiang X., Lockridge O., Doctor B.P. Differences in Active Site Gorge Dimensions of Cholinesterases Revealed by Binding of Inhibitors to Human Butyrylcholinesterase. Biochemistry. 1997;36:14642–14651. doi: 10.1021/bi971425+. PubMed DOI
Rosenberry T.L. Catalysis by acetylcholinesterase: Evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proc. Natl. Acad. Sci. USA. 1975;72:3834–3838. doi: 10.1073/pnas.72.10.3834. PubMed DOI PMC
Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol. Ther. 1990;47:35–60. doi: 10.1016/0163-7258(90)90044-3. PubMed DOI
Pezzementi L., Nachon F., Chatonnet A. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: An atypical butyrylcholinesterase from the medaka oryzias latipes. PLoS ONE. 2011;6:17396. doi: 10.1371/annotation/938a4e59-a5d1-448c-b7c1-632bf9e7e8ef. PubMed DOI PMC
Ventura A.L.M., Abreu P.A., Freitas R.C.C., Sathler P.C., Loureiro N., Castro H.C. Colinergic system: Revisiting receptors, regulation and the relationship with Alzheimer disease, schizophrenia, epilepsy and smoking. Rev. Psiquiatr. Clin. 2010;37:74–80.
de Castro A.A., Prandi I.G., Kuca K., Ramalho T.C. Enzimas degradantes de organofosforados: Base molecular e perspectivas para biorremediação enzimática de agroquímicos. Ciência e Agrotecnologia. 2017;41:471–482. doi: 10.1590/1413-70542017415000417. DOI
Pereira A.F., de Castro A.A., Soares F.V., Soares Leal D.H., da Cunha E.F.F., Mancini D.T., Ramalho T.C. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact. 2019;308:323–331. doi: 10.1016/j.cbi.2019.06.007. PubMed DOI
de Castro A.A., Soares F.V., Pereira A.F., Silva T.C., Silva D.R., Mancini D.T., Caetano M.S., da Cunha E.F.F., Ramalho T.C. Asymmetric biodegradation of the nerve agents Sarin and VX by human dUTPase: Chemometrics, molecular docking and hybrid QM/MM calculations. J. Biomol. Struct. Dyn. 2019;37:2154–2164. doi: 10.1080/07391102.2018.1478751. PubMed DOI
Soares F.V., de Castro A.A., Pereira A.F., Leal D.H.S., Mancini D.T., Krejcar O., Ramalho T.C., da Cunha E.F.F., Kuca K. Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication. Int. J. Mol. Sci. 2018;19:1257. doi: 10.3390/ijms19041257. PubMed DOI PMC
de Castro A.A., Assis L.C., Silva D.R., Corrêa S., Assis T.M., Gajo G.C., Soares F.V., Ramalho T.C. Computational enzymology for degradation of chemical warfare agents: Promising technologies for remediation processes. AIMS Microbiol. 2017;3:108–135. doi: 10.3934/microbiol.2017.1.108. PubMed DOI PMC
De Giacoppo J.O.S., França T.C.C., da Cunha E.F.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI
Martins T.L.C., Ramalho T.C., Fiqueroa-Villar J.D. A Theoretical and Experimental 13C and 15N NMR Investigation of Guanylhydrazones in Solution. Mag. Reson. Chem. 2003;41:983–988. doi: 10.1002/mrc.1299. DOI
Ramalho T.C., de Castro A.A., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI
Sharma R., Gupta B., Singh N., Acharya J.R., Musilek K., Kuca K., Ghosh K. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini-Rev. Med. Chem. 2014;15:58–72. doi: 10.2174/1389557514666141128102837. PubMed DOI
Santos L.A., Prandi I.G., De Ramalho T.C. Could Quantum Mechanical Properties Be Reflected on Classical Molecular Dynamics? The Case of Halogenated Organic Compounds of Biological Interest. Front. Chem. 2019;7:848. doi: 10.3389/fchem.2019.00848. PubMed DOI PMC
Benschop H.P., De Jong L.P.A. Nerve Agent Stereoisomers: Analysis, Isolation, and Toxicology. Acc. Chem. Res. 1988;21:368–374. doi: 10.1021/ar00154a003. DOI
Melzer M., Chen J.C.H., Heidenreich A., Gäb J., Koller M., Kehe K., Blum M.M. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. J. Am. Chem. Soc. 2009;131:17226–17232. doi: 10.1021/ja905444g. PubMed DOI
Marimuthu P., Lee Y.-J., Kim B., Seo S.S. In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly. J. Biomol. Struct. Dyn. 2019;37:307–320. doi: 10.1080/07391102.2018.1426046. PubMed DOI
Wong P.T., Bhattacharjee S., Cannon J., Tang S., Yang K., Bowden S., Varnau V., O’Konek J.J., Choi S.K. Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers. Org. Biomol. Chem. 2019;17:3951–3963. doi: 10.1039/C9OB00503J. PubMed DOI
Quinn D.M., Topczewski J.J. Compounds and Methods to Treat Organophosphorus Poisoning. U.S. Patent 2016/151342 A1. 2016 Jun 2
Da Petronilho E.C., Figueroa-Villar J.D. Agents for defense against chemical warfare: Reactivators of the inhibited acetylcholinesterase with organophosphorus neurotoxic compounds. Rev. Virtual Quim. 2014;6:671–686. doi: 10.5935/1984-6835.20140042. DOI
Kim K., Tsay O.G., Atwood D.A., Churchill D.G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011;111:5345–5403. doi: 10.1021/cr100193y. PubMed DOI
Ordentlich A., Barak D., Sod-Moriah G., Kaplan D., Mizrahi D., Segall Y., Kronman C., Karton Y., Lazar A., Marcus D., et al. Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE. Biochemistry. 2004;43:11255–11265. doi: 10.1021/bi0490946. PubMed DOI
Alvim R.S., Vaiss V.S., Leitão A.A., Borges I. Theoretical chemistry at the service of the chemical defense: Degradation of nerve agents in magnesium oxide and hydroxide surface. Rev. Virtual Quim. 2014;6:687–723. doi: 10.5935/1984-6835.20140043. DOI
Cavalcanti L.P.A.N., De Aguiar A.P., Lima J.A., Lima A.L.S. Organophosphorous poisoning: Treatment and analytical methodologies applied in evaluation of reactivation and inhibition of acetylcholinesterase. Rev. Virtual Quim. 2016;8:739–766. doi: 10.5935/1984-6835.20160056. DOI
Zilker T. Medical management of incidents with chemical warfare agents. Toxicology. 2005;214:221–231. doi: 10.1016/j.tox.2005.06.028. PubMed DOI
Dichtwald S., Weinbroum A.A. Bioterrorism and the anaesthesiologist’s perspective. Best Pract. Res. Clin. Anaesthesiol. 2008;22:477–502. doi: 10.1016/j.bpa.2008.05.004. PubMed DOI
Newman D.J., Cragg G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007;70:461–477. doi: 10.1021/np068054v. PubMed DOI
Wilson I.B. Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate. J. Biol. Chem. 1951;190:111–117. PubMed
Wilson I.B., Ginsburg S. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. Biophys. Acta. 1955;18:168–170. doi: 10.1016/0006-3002(55)90040-8. PubMed DOI
Petroianu G.A. The history of pyridinium oximes as nerve gas antidotes: The British contribution. Pharmazie. 2013;68:916–918. PubMed
Worek F., Thiermann H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 2013;139:249–259. doi: 10.1016/j.pharmthera.2013.04.009. PubMed DOI
Franjesevic A.J., Sillart S.B., Beck J.M., Vyas S., Callam C.S., Hadad C.M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chemistry. 2019;25:5337–5371. doi: 10.1002/chem.201805075. PubMed DOI PMC
Wang J., Gu J., Leszczynski J., Feliks M., Sokalski W.A. Oxime-Induced Reactivation of Sarin-Inhibited AChE: A Theoretical Mechanisms Study. J. Phys. Chem. B. 2007;111:2404–2408. doi: 10.1021/jp067741s. PubMed DOI
Artursson E., Akfur C., Hörnberg A., Worek F., Ekström F. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology. 2009;265:108–114. doi: 10.1016/j.tox.2009.09.002. PubMed DOI
Kuca K., Jun D., Musilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini-Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI
Lundy P.M., Raveh L., Amitai G. Development of the Bisquaternary Oxime HI-6 Toward Clinical Use in the Treatment of Organophosphate Nerve Agent Poisoning. Toxicol. Rev. 2006;25:231–243. doi: 10.2165/00139709-200625040-00004. PubMed DOI
Kitagawa D., Cavalcante S., de Paula R., Rodrigues R., Bernardo L., da Silva M., da Silva T., dos Santos W., Granjeiro J., de Almeida J., et al. In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules. 2019;9:583. doi: 10.3390/biom9100583. PubMed DOI PMC
Kuca K., Nepovimova E., Wu Q., de Souza F.R., de Castro Ramalho T., Franca T.C.C., Musilek K. Experimental hydrophilic reactivator: Bisoxime with three positive charges. Chem. Pap. 2019;73:777–782. doi: 10.1007/s11696-018-0612-6. DOI
Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F.F., França T.C.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem. Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI
Musilek K., Holas O., Kuca K., Jun D., Dohnal V., Opletalova V., Dolezal M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2008;23:70–76. doi: 10.1080/14756360701383981. PubMed DOI
Kuca K., Musilek K., Jun D., Zdarova-Karasova J., Nepovimova E., Soukup O., Hrabinova M., Mikler J., Franca T.C.C., Da Cunha E.F.F., et al. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol. 2018;19:1–10. doi: 10.1186/s40360-018-0196-3. PubMed DOI PMC
Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Oximes as pretreatment before acute exposure to paraoxon. J. Appl. Toxicol. 2019;39:1506–1515. doi: 10.1002/jat.3835. PubMed DOI
Jaćević V., Nepovimova E., Kuča K. Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-018-37837-4. PubMed DOI PMC
Jaćević V., Nepovimova E., Kuča K. Acute Toxic Injuries of Rat’s Visceral Tissues Induced by Different Oximes. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-52768-4. PubMed DOI PMC
Katz F.S., Pecic S., Tran T.H., Trakht I., Schneider L., Zhu Z., Ton-That L., Luzac M., Zlatanic V., Damera S., et al. Discovery of New Classes of Compounds that Reactivate Acetylcholinesterase Inhibited by Organophosphates. ChemBioChem. 2015;16:2205–2215. doi: 10.1002/cbic.201500348. PubMed DOI PMC
de Koning M.C., Horn G., Worek F., van Grol M. Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem. 2018;157:151–160. doi: 10.1016/j.ejmech.2018.08.016. PubMed DOI
Cadieux C.L., Wang H., Zhang Y., Koenig J.A., Shih T.M., McDonough J., Koh J., Cerasoli D. Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents. Chem. Biol. Interact. 2016;259:133–141. doi: 10.1016/j.cbi.2016.04.002. PubMed DOI PMC
Niessen K.V., Seeger T., Rappenglück S., Wein T., Höfner G., Wanner K.T., Thiermann H., Worek F. In vitro pharmacological characterization of the bispyridinium non-oxime compound MB327 and its 2- and 3-regioisomers. Toxicol. Lett. 2018;293:190–197. doi: 10.1016/j.toxlet.2017.10.009. PubMed DOI
Zhuang Q., Franjesevic A.J., Corrigan T.S., Coldren W.H., Dicken R., Sillart S., DeYong A., Yoshino N., Smith J., Fabry S., et al. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J. Med. Chem. 2018;61:7034–7042. doi: 10.1021/acs.jmedchem.7b01620. PubMed DOI
Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI
Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem. Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI
Kovalevsky A., Blumenthal D.K., Cheng X., Taylor P., Radić Z. Limitations in current acetylcholinesterase structure–based design of oxime antidotes for organophosphate poisoning. Ann. N. Y. Acad. Sci. 2016;1378:41–49. doi: 10.1111/nyas.13128. PubMed DOI PMC
Carletti E., Colletier J.-P., Dupeux F., Trovaslet M., Masson P., Nachon F. Structural Evidence That Human Acetylcholinesterase Inhibited by Tabun Ages through O-Dealkylation. J. Med. Chem. 2010;53:4002–4008. doi: 10.1021/jm901853b. PubMed DOI
Kalisiak J., Ralph E.C., Zhang J., Cashman J.R. Amidine−Oximes: Reactivators for Organophosphate Exposure. J. Med. Chem. 2011;54:3319–3330. doi: 10.1021/jm200054r. PubMed DOI
Quinn M.D., Topczewski J., Yasapala N., Lodge A. Why is Aged Acetylcholinesterase So Difficult to Reactivate? Molecules. 2017;22:1464. doi: 10.3390/molecules22091464. PubMed DOI PMC
Chambers J.E., Chambers H.W., Meek E.C. Novel Oximes for Reactivating Butyrylcholinesterase. 2017/0258774 A1. U.S. Patent. 2017 Sep 14;
Chambers J.E., Meek E.C., Bennett J.P., Bennett W.S., Chambers H.W., Leach C.A., Pringle R.B., Wills R.W. Novel substituted phenoxyalkyl pyridinium oximes enhance survival and attenuate seizure-like behavior of rats receiving lethal levels of nerve agent surrogates. Toxicology. 2016;339:51–57. doi: 10.1016/j.tox.2015.12.001. PubMed DOI PMC
Kovarik Z., Ciban N., Radić Z., Simeon-Rudolf V., Taylor P. Active site mutant acetylcholinesterase interactions with 2-PAM, HI-6, and DDVP. Biochem. Biophys. Res. Commun. 2006;342:973–978. doi: 10.1016/j.bbrc.2006.02.056. PubMed DOI
Musilova L., Kuca K., Jung Y.-S., Jun D. In vitro oxime-assisted reactivation of paraoxon-inhibited human acetylcholinesterase and butyrylcholinesterase. Clin. Toxicol. 2009;47:545–550. doi: 10.1080/15563650903058914. PubMed DOI
Jun D., Musilova L., Pohanka M., Jung Y.-S., Bostik P., Kuca K. Reactivation of Human Acetylcholinesterase and Butyrylcholinesterase Inhibited by Leptophos-Oxon with Different Oxime Reactivators in Vitro. Int. J. Mol. Sci. 2010;11:2856–2863. doi: 10.3390/ijms11082856. PubMed DOI PMC
Jun D., Musilova L., Musilek K., Kuca K. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase. Int. J. Mol. Sci. 2011;12:2077–2087. doi: 10.3390/ijms12032077. PubMed DOI PMC
Valdez C.A., Be N.A., Alfatti M.A., Enright H.A., Bennion B.J., Carpenter T.S., Hok S., lao H.L., Nguyen T.H. Compounds for Central Reactivation of Organophosphorus-Based Compound-Inhibited Acetylcolinesterase and/or Inactivation of Organophosphorus-Based Acetylcholinesterase Inhibitors and Related Compositions Methods and Systems for Making and Using Them. 2019/0152920 A1. U.S. Patent. 2019 May 23;
Batool A., Kamal M.A., Rizvi S.M.D., Rashid S. Topical Discoveries on Multi-Target Approach to Manage Alzheimer’s Disease. Curr. Drug Metab. 2018;19:704–713. doi: 10.2174/1389200219666180305152553. PubMed DOI
Du W.-J., Guo J.-J., Gao M.-T., Hu S.-Q., Dong X.-Y., Han Y.-F., Liu F.-F., Jiang S., Sun Y. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci. Rep. 2015;5:7992. doi: 10.1038/srep07992. PubMed DOI PMC
Khavrutskii I., Wallqvist A. Compositions and Methods for Reactivating Cholinesterases. 2017/218886 A1. WO Patent. 2017 Dec 21;
Hardman J.G., Limbird L.E., Gilman A.G. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 10th ed. McGraw-Hill; New York, NY, USA: 2001.
Gorecki L., Korabecny J., Musilek K., Nepovimova E., Malinak D., Kucera T., Dolezal R., Jun D., Soukup O., Kuca K. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: A patent review (2006–2016) Expert Opin. Ther. Pat. 2017;27:971–985. doi: 10.1080/13543776.2017.1338275. PubMed DOI
Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors