Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FIM Excellence project
UHK
CEP - Centrální evidence projektů
PubMed
32244581
PubMed Central
PMC7181077
DOI
10.3390/s20071966
PII: s20071966
Knihovny.cz E-zdroje
- Klíčová slova
- foodborne pathogens, nanomaterials, nanotechnology, safety, sensor,
- MeSH
- Bacteria izolace a purifikace patogenita MeSH
- biosenzitivní techniky * MeSH
- grafit chemie MeSH
- lidé MeSH
- nanočástice chemie MeSH
- nanostruktury chemie MeSH
- nanotechnologie trendy MeSH
- nanotrubičky uhlíkové chemie MeSH
- nemoci přenášené potravou diagnóza mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit MeSH
- nanotrubičky uhlíkové MeSH
The intake of microbial-contaminated food poses severe health issues due to the outbreaks of stern food-borne diseases. Therefore, there is a need for precise detection and identification of pathogenic microbes and toxins in food to prevent these concerns. Thus, understanding the concept of biosensing has enabled researchers to develop nanobiosensors with different nanomaterials and composites to improve the sensitivity as well as the specificity of pathogen detection. The application of nanomaterials has enabled researchers to use advanced technologies in biosensors for the transfer of signals to enhance their efficiency and sensitivity. Nanomaterials like carbon nanotubes, magnetic and gold, dendrimers, graphene nanomaterials and quantum dots are predominantly used for developing biosensors with improved specificity and sensitivity of detection due to their exclusive chemical, magnetic, mechanical, optical and physical properties. All nanoparticles and new composites used in biosensors need to be classified and categorized for their enhanced performance, quick detection, and unobtrusive and effective use in foodborne analysis. Hence, this review intends to summarize the different sensing methods used in foodborne pathogen detection, their design, working principle and advances in sensing systems.
Centre of Nanotechnology Amity University Manesar Gurugram Haryana 122413 India
Department of Biological Engineering College of Engineering Konkuk University Seoul 143 701 Korea
Department of Biotechnology Himachal Pradesh University Summer Hill Shimla 171005 H P India
Zobrazit více v PubMed
Vo-Dinh T., Cullum B.M., Stokes D.L. Nanosensors and biochips: Frontiers in biomolecular diagnostics. Sens. Actuators B Chem. 2001;74:2–11. doi: 10.1016/S0925-4005(00)00705-X. DOI
Jain K.K. Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 2003;3:153–161. doi: 10.1586/14737159.3.2.153. PubMed DOI
Haruyama T. Micro- and nanobiotechnology for biosensing cellular responses. Adv. Drug Deliv. Rev. 2003;55:393–401. doi: 10.1016/S0169-409X(02)00224-7. PubMed DOI
World Health Organization Estimating the Burden of Foodborne Diseases. [(accessed on 21 January 2020)]; Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases.
Fratamico P.M., Gehring A.G., Karns J., Van Kessel J. Detecting pathogens in cattle and meat. In: EditorSofos J., editor. Improving the Safety of Fresh Meat. Woodhead Publishing; Cambridge, UK: 2005. pp. 24–55.
Lazcka O., Campo F.J.D., Muňoz F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007;22:1205–1217. doi: 10.1016/j.bios.2006.06.036. PubMed DOI
Bhunia A.K. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv. Food Nutr. Res. 2008;54:1–44. PubMed
Kalpana S.R., Anshul S., Rao N.H. Nanotechnology in food processing sector-An assessment of emerging trends. J. Food Sci. Technol. 2013;50:831–841. doi: 10.1007/s13197-012-0873-y. PubMed DOI PMC
Gabig-Ciminska M. Developing nucleic acid-based electrical detection systems. Microb. Cell Fact. 2006;5:9. doi: 10.1186/1475-2859-5-9. PubMed DOI PMC
Syed M.A., Bokhari S.H.A. Gold nanoparticle based microbial detection and identification. J. Biomed. Nanotechnol. 2011;7:229–237. doi: 10.1166/jbn.2011.1281. PubMed DOI
Doria G., Conde J., Veigas B., Giestas L., Almeida C., Assuncao M., Joao R., Pedro V.B. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12:1657–1687. doi: 10.3390/s120201657. PubMed DOI PMC
Yeh Y.C., Creran B., Rotello V.M. Gold Nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–1880. doi: 10.1039/C1NR11188D. PubMed DOI PMC
Baughman R.H., Zakhidov A.A., Heer W.A.D. Carbon Nanotubes-the route toward applications. Science. 2002;297:787–792. doi: 10.1126/science.1060928. PubMed DOI
Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Joo S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014;9:393. doi: 10.1186/1556-276X-9-393. PubMed DOI PMC
Akbarzadeh A., Samiei M., Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012;7:144. doi: 10.1186/1556-276X-7-144. PubMed DOI PMC
Huan C., Shu-Qing S. Silicon nanoparticles: Preparation, properties, and applications. Chin. Phys. B. 2014;23:088102.
Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced grapheme oxide and their nanocomposites. Nano Mater. Sci. 2019;1:31–47. doi: 10.1016/j.nanoms.2019.02.004. DOI
Klajnert B., Bryszewska M. Dendrimers: Properties and applications. Acta Biochim. Pol. 2001;48:199–208. doi: 10.18388/abp.2001_5127. PubMed DOI
Abbasi E., Aval S.F., Akbarzadeh A., Milani M., Nasrabadi H.T., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014;9:247. doi: 10.1186/1556-276X-9-247. PubMed DOI PMC
Kumar R., Singh S., Yadav B.C. Conducting polymers: Synthesis, properties and applications. Int. Adv. Res. J. Sci. Eng. Technol. 2015;2:110–124.
Gerwen P.V., Laureyn W., Laureys W., Huyberechts G., Beecka M.O.D., Baert K., Suls J., Sansen W., Jacobs P., Hermans L., et al. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators B Chem. 1998;49:73–80. doi: 10.1016/S0925-4005(98)00128-2. DOI
Pak S.C., Penrose W., Hesketh P.J. An ultrathin platinum film sensor to measure biomolecular binding. Biosens. Bioelectron. 2001;16:371–379. doi: 10.1016/S0956-5663(01)00152-X. PubMed DOI
Bhushan B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 2007;84:387–412. doi: 10.1016/j.mee.2006.10.059. DOI
Zeng S., Yong K.T., Roy I., Dinh X.Q., Yu X., Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011;6:491–506. doi: 10.1007/s11468-011-9228-1. DOI
Nath N., Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 2002;74:504–509. doi: 10.1021/ac015657x. PubMed DOI
Haes A.J., Duyne R.P.V. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002;124:10596–10604. doi: 10.1021/ja020393x. PubMed DOI
Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Zhu Y., Zhao Q., Li Y., Cal X., Li W. The interaction and toxicity of multi-walled carbon nanotubes with Stylonychiamytilus. J. Nanosci. Nanotechnol. 2006;6:1357–1364. doi: 10.1166/jnn.2006.194. PubMed DOI
Fujitani T., Ohyama K., Hirose A., Nishimura T., Nakae D., Ogata A. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci. 2012;37:81–89. doi: 10.2131/jts.37.81. PubMed DOI
Qi W., Bi J., Zhang X., Wang J., Wang J., Liu P., Li Z., Wu W. Damaging effects of multi- walled carbon nanotubes on pregnant mice with different pregnancy times. Sci. Rep. 2014;4:4352. doi: 10.1038/srep04352. PubMed DOI PMC
Vlaanderen J., Pronk A., Rothman N., Hildesheim A., Silverman D., Hosgood H.D., Spaan S., Kuijpers E., Godderis L., Hoet P., et al. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology. 2017;11:395–404. doi: 10.1080/17435390.2017.1308031. PubMed DOI
Pietroiusti A., Massimiani M., Fenoglio I., Colonna M., Valentini F., Palleschi G., Camaioni A., Magrini A., Siracusa G., Bergamaschi A., et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5:4624–4633. doi: 10.1021/nn200372g. PubMed DOI
Philbrook N.A., Walker V.K., Afrooz A.R., Saleh N.B., Winn L.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1mice. Reprod. Toxicol. 2011;32:442–448. doi: 10.1016/j.reprotox.2011.09.002. PubMed DOI
Karathanasis A.D. Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci. Soc. Am. J. 1999;63:830–838. doi: 10.2136/sssaj1999.634830x. DOI
Chu M., Wu Q., Yang H., Yuan R., Hou S., Yang Y., Zou Y., Xu S., Xu K., Ji A., et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small. 2010;6:670–678. doi: 10.1002/smll.200902049. PubMed DOI
Zhang X.D., Wu H.Y., Wu D., Wang Y.Y., Chang J.H., Zhai Z.B., Meng A.M., Liu P.X., Zhang L.A., Fan F.Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomed. 2010;5:771–781. doi: 10.2147/IJN.S8428. PubMed DOI PMC
Vaitkuviene A., Kaseta V., Voronovic J., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A., Ramanavicius A. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J. Hazard. Mater. 2013;250:167–174. doi: 10.1016/j.jhazmat.2013.01.038. PubMed DOI
Sharifabadi M.A., Koohi M.K., Zayerzadeh E., Hablolvarid M.H., Hassan J., Seifalian A.M. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomed. 2018;13:4757–4769. doi: 10.2147/IJN.S168731. PubMed DOI PMC
Awaad A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver and genital tract of mice following intravaginal instillation. J. Basic Appl. Zool. 2015;71:32–47. doi: 10.1016/j.jobaz.2015.03.003. DOI
Mukherjee S.P., Lyng F.M., Garcia A., Davoren M., Byrne H.J. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol. Appl. Pharmacol. 2010;248:259–268. doi: 10.1016/j.taap.2010.08.016. PubMed DOI
University of Wollongong. [(accessed on 5 October 2019)]; Available online: https://documents.uow.edu.au/content/groups/public/@web/@ohs/documents/doc/uow136509.pdf.
Department of Science & Technology. [(accessed on 4 October 2019)]; Available online: http://nanomission.gov.in/What_new/Draft_Guidelines_and_Best_Practices.pdf.
Concordia University. [(accessed on 2 October 2019)]; Available online: https://www.concordia.ca/content/dam/concordia/services/safety/docs/EHS-DOC-035_NanomaterialsSafetyGuidelines.pdf.
European Commission. [(accessed on 2 October 2019)]; Available online: https://osha.europa.eu/en/legislation/guidelines/guidance-protection-health-and-safety-workers-potential-risks-related.
World Health Organization. [(accessed on 7 October 2019)]; Available online: https://apps.who.int/iris/bitstream/handle/10665/259671/9789241550048-eng.pdf?sequence=1.
Food and Drug Administration. [(accessed on 4 October 2019)]; Available online: https://www.fda.gov/media/83957/download.
Pandit S., Dasgupta D., Dewan N., Ahmed P. Nanotechnology based biosensors and its application. PharamInnov. J. 2016;5:18–25.
Weber J.E., Pillai S., Rama M.K., Kumar A., Singh S.R. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode. Mater. Sci. Eng. C. 2011;31:821–825. doi: 10.1016/j.msec.2010.12.009. DOI
Hasan M.R., Pulingam T., Appaturi J.N., Zifruddin A.N., The S.J., Lim T.W., Ibrahim F., Leo B.F., Thong K.L. Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella. Anal. Biochem. 2018;554:34–43. doi: 10.1016/j.ab.2018.06.001. PubMed DOI
Yamada K., Kim C.T., Kim J.H., Chung J.H., Lee H.G., Jun S. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS ONE. 2014;9:e105767. doi: 10.1371/journal.pone.0105767. PubMed DOI PMC
Sperling R.A., Rivera P.G., Zhang F., Zanella M., Parak W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008;37:1896–1908. doi: 10.1039/b712170a. PubMed DOI
Guo S., Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta. 2007;598:181–192. doi: 10.1016/j.aca.2007.07.054. PubMed DOI
Zhang Y. Electrochemical DNA biosensors based on gold nanoparticles/cysteamine/poly (glutamic acid) modified electrode. Am. J. Biomed. Sci. 2007;1:115–125. doi: 10.5099/aj090200115. DOI
Lin Y.H., Chen S.H., Chuang Y.C., Lu Y.C., Shen T.Y., Chang C.A., Lin C.S. Disposable amperometricimmunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens. Bioelectron. 2008;23:1832–1837. doi: 10.1016/j.bios.2008.02.030. PubMed DOI
Hong S.A., Kwon J., Kim D., Yang S. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosens. Bioelectron. 2015;64:338–344. doi: 10.1016/j.bios.2014.09.025. PubMed DOI
Davis D., Guo X., Musavi L., Lin C.S., Chen S.H., Wu V.C.H. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Ind. Biotechnol. 2013;9:31–36. doi: 10.1089/ind.2012.0033. DOI
Zhang H., Ma X., Liu Y., Duan N., Wu S., Wang Z., Xu B. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens. Bioelectron. 2015;15:872–877. doi: 10.1016/j.bios.2015.07.033. PubMed DOI
Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Crivens W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI
Sun Y.P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI
Li H., Kang Z., Liu Y., Lee S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012;22:24230–24253. doi: 10.1039/c2jm34690g. DOI
Ding C., Zhu A., Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivobioimaging. Acc. Chem. Res. 2014;47:20–30. doi: 10.1021/ar400023s. PubMed DOI
Wang R., Xu Y., Zhang T., Jiang Y. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal. Methods. 2015;7:1701–1706. doi: 10.1039/C4AY02880E. DOI
Wang B., Chen Y., Wu Y., Weng B., Liu Y., Lu Z., Li C.M., Yu C. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB 1. Biosens. Bioelectron. 2016;78:23–30. doi: 10.1016/j.bios.2015.11.015. PubMed DOI
Zhao Y., Ye M., Chao Q., Jia N., Ge Y., Shen H. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J. Agric. Food Chem. 2008;57:517–524. doi: 10.1021/jf802817y. PubMed DOI
Mandal T.K., Parvin N. Rapid detection of bacteria by carbon quantum dots. J. Biomed. Nanotechnol. 2011;7:846–848. doi: 10.1166/jbn.2011.1344. PubMed DOI
Liu C.Y., Jia Q.J., Yang C.H., Qiao R.R., Jing L.H., Wang L.B., Xu C.L., Gao M.Y. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal. Chem. 2011;83:6778–6784. doi: 10.1021/ac201462d. PubMed DOI
Quesada-González D., Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015;73:47–63. doi: 10.1016/j.bios.2015.05.050. PubMed DOI
Huang X., Aguilar Z.P., Xu H., Lai W., Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron. 2016;75:166–180. doi: 10.1016/j.bios.2015.08.032. PubMed DOI
Ren W., Cho H., Zhou Z., Irudayaraj J. Ultrasensitive detection of microbial cells usingmagnetic focus enhanced lateral flow sensors. Chem. Commun. 2016;52:4930–4933. doi: 10.1039/C5CC10240E. PubMed DOI
Qiao Z.H., Lei C.Y., Fu Y.C., Li Y.B. Rapid and sensitive detection of E. coli O157:H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification. Anal. Methods. 2017;9:5204–5210. doi: 10.1039/C7AY01643C. DOI
Wang D.B., Tian B., Zhang Z.P., Wang X.Y., Fleming J., Bi L.J., Yang R.F., Zhang X.E. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “road closure”. Biosens. Bioelectron. 2015;67:608–614. doi: 10.1016/j.bios.2014.09.067. PubMed DOI
Suaifan G., Alhogail S., Zourob M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2017;92:702–708. doi: 10.1016/j.bios.2016.10.023. PubMed DOI
Xia S., Yu Z., Liu D., Xu C., Lai W. Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk. Food Cont. 2016;59:507–512. doi: 10.1016/j.foodcont.2015.06.028. DOI
Bahadir E.B., Sezgintürk M.K. Poly (amidoamine) (PAMAM): An emerging material for electrochemical bio (sensing) applications. Talanta. 2016;148:427–438. doi: 10.1016/j.talanta.2015.11.022. PubMed DOI
Shiddiky M.J.A., Rahman M.A., Shim Y.B. Hydrazine-catalyzed ultrasensitive detection of DNA and proteins. Anal. Chem. 2007;79:6886–6890. doi: 10.1021/ac0710127. PubMed DOI
Shiddiky M.J.A., Rahman M.A., Cheol C.S., Shim Y.B. Fabrication of disposable sensors for biomolecule detction using hydrazine electrocatalyst. Anal. Biochem. 2008;379:170–175. doi: 10.1016/j.ab.2008.05.004. PubMed DOI
Castillo G., Spinella K., Poturnayová A., Šnejdárková M., Mosiello L., Hianik T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Cont. 2015;52:9–18. doi: 10.1016/j.foodcont.2014.12.008. DOI
Wang Y., Wang T., Da P., Xu M., Wu H., Zheng G. Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 2013;25:5177–5195. doi: 10.1002/adma.201301943. PubMed DOI
Nishimura H., Ritchie K., Kasai R.S., Goto M., Morone N., Sugimura H., Tanaka K., Sase I., Yoshimura A., Nakano Y., et al. Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol. 2013;202:967–983. doi: 10.1083/jcb.201301053. PubMed DOI PMC
Lai C.H., Hütter J., Hsu C.W., Tanaka H., Varela-Aramburu S., Cola L., Lepenies B., Seeberger P.H. Analysis of carbohydrate-carbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Lett. 2016;16:807–811. doi: 10.1021/acs.nanolett.5b04984. PubMed DOI
Park J.H., Gu L., von-Maltzahn G., Ruoslahti E., Bhatia S.N., Sailor M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009;8:331–336. doi: 10.1038/nmat2398. PubMed DOI PMC
Chiappini C., De-Rosa E., Martinez J.O., Liu X., Steele J., Stevens M.M., Tasciotti E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 2015;14:532–539. doi: 10.1038/nmat4249. PubMed DOI PMC
Phillips E., Penate-Medina O., Zanzonico P.B., Carvajal R.D., Mohan P., Ye Y., Humm J., Gönen M., Kalaigian H., Schöder H., et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014;6:260ra149. doi: 10.1126/scitranslmed.3009524. PubMed DOI PMC
Mathew F.P., Alocilja E.C. Porous silicon-based biosensor for pathogen detection. Biosens. Bioelectron. 2005;20:1656–1661. doi: 10.1016/j.bios.2004.08.006. PubMed DOI
Zhang D., Alocilja E.C. Characterization of nanoporous silicon-based DNA biosensor for the detection of Salmonella enteritidis. IEEE Sens. J. 2008;8:775–780. doi: 10.1109/JSEN.2008.923037. DOI
Pumera M. Graphene in biosensing. Mater. Today. 2011;14:308–315. doi: 10.1016/S1369-7021(11)70160-2. DOI
Rao C.N.R., Sood A.K., Subrahmanyam K.S., Govindaraj A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009;48:7752–7777. doi: 10.1002/anie.200901678. PubMed DOI
Kasry A., Ardakani A.A., Tulevski G.S., Menges B., Copel M., Vyklicky L. Highly efficient fluorescence quenching with graphene. J. Phys. Chem. C. 2012;116:2858–2862. doi: 10.1021/jp207972f. DOI
Wu X., Xing Y., Zeng K., Huber K., Zhao J.X. Study of fluorescence quenching ability of graphene oxide with a layer of rigid and tunable silica spacer. Langmuir. 2018;34:603–611. doi: 10.1021/acs.langmuir.7b03465. PubMed DOI
Batır G.G., Arık M., Caldıran Z., Turut A., Aydogan S. Synthesis and characterization of reduced graphene oxide/rhodamine 101 (rGO-Rh101) nanocomposites and their heterojunction performance in rGORh101/p-Si device configuration. J. Electron. Mater. 2018;47:329–336. doi: 10.1007/s11664-017-5758-4. DOI
Tiwari I., Singh M., Pandey C.M., Sumana G. Electrochemical genosensor based on graphene oxide modified iron oxide-chitosan hybrid nanocomposite for pathogen detection. Sens. Actuators B Chem. 2015;206:276–283. doi: 10.1016/j.snb.2014.09.056. DOI
Pandey A., Gurbuz Y., Ozguz V., Niazi J.H., Qureshi A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens. Bioelectron. 2017;91:225–231. doi: 10.1016/j.bios.2016.12.041. PubMed DOI
Srivastava S., Kumar V., Ali M.A., Solanki P.R., Srivastava A., Sumana G., Saxena P.S., Joshi A.G., Malhotra B.D. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale. 2013;5:3043–3051. doi: 10.1039/c3nr32242d. PubMed DOI
Srivastava S., Abraham S., Singh C., Ali M.A., Srivastava A., Sumana G., Malhotra B.D. Protein conjugated carboxylatedgold@reduced graphene oxide for aflatoxin B1 detection. RSC Adv. 2015;5:5406–5414. doi: 10.1039/C4RA12713G. DOI
Faridbod F., Norouzi P., Dinarvand R., Ganjali M.R. Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors. 2008;8:2331–2412. doi: 10.3390/s8042331. PubMed DOI PMC
Geise R.J., Adams J.M., Barone N.J., Yacynych A.M. Electropolymerized films to prevent interferences and electrode fouling in biosensors. Biosens. Bioelectron. 1991;6:151–160. doi: 10.1016/0956-5663(91)87039-E. DOI
Oh W.H., Kwon O.S., Jang J. Conducting polymer nanomaterials for biomedical applications: Cellular interfacing and biosensing. Polym. Rev. 2013;53:407–442. doi: 10.1080/15583724.2013.805771. DOI
Malhotra B.D., Chaubey A., Singh S.P. Prospects of conducting polymers in biosensors. Anal. Chim. Acta. 2006;578:59–74. doi: 10.1016/j.aca.2006.04.055. PubMed DOI
Tully E., Higson S.P., Kennedy R.O. The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, internalin B. Biosens. Bioelectron. 2008;23:906–912. doi: 10.1016/j.bios.2007.09.011. PubMed DOI
Muhammad-Tahir Z., Alocilja E.C. Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sens. J. 2003;3:345–351. doi: 10.1109/JSEN.2003.815782. DOI
Muhammad-Tahir Z., Alocilja E.C. A disposable biosensor for pathogen detection in fresh produce samples. Biosyst. Eng. 2004;88:145–151. doi: 10.1016/j.biosystemseng.2004.03.005. DOI
Sheikhzadeh E., Chamsaz M., Turner A.P.F., Jager E.W.H., Beni V. Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens. Bioelectron. 2016;80:194–200. doi: 10.1016/j.bios.2016.01.057. PubMed DOI
Nordin N., Yusof N.A., Abdullah J., Radu S., Hushiarian R. A simple, portable, electrochemical biosensor to screen shellfish for Vibrio parahaemolyticus. AMB Express. 2017;7:41. doi: 10.1186/s13568-017-0339-8. PubMed DOI PMC
Nordin N., Yusof N.A., Radu S., Hushiarian R. Development of an electrochemical DNA biosensor to detect a foodborne pathogen. J. Vis. Exp. 2018;136:e56585. doi: 10.3791/56585. PubMed DOI PMC
Suaifan G.A.R.Y., Alhogail S., Zourob M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 2017;90:230–237. doi: 10.1016/j.bios.2016.11.047. PubMed DOI
Viswanathan S., Rani C., Ho J.A. Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta. 2012;94:315–319. doi: 10.1016/j.talanta.2012.03.049. PubMed DOI
Dong J., Zhao H., Xu M., Ma Q., Ai S. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem. 2013;141:1980–1986. doi: 10.1016/j.foodchem.2013.04.098. PubMed DOI
Byeon H.M., Vodyanoy V.J., Oh J.H., Kwon J.H., Parka M.K. Lytic phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 2015;162:B230–B234. doi: 10.1149/2.0681508jes. DOI
Minett A.I., Barisci J.N., Wallace G.G. Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria. Anal. Chim. Acta. 2003;475:37–45. doi: 10.1016/S0003-2670(02)01033-4. DOI
Sun Y., Duan N., Ma P., Liang Y., Zhu X., Wang Z. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. J. Agric. Food Chem. 2019;67:2313–2320. doi: 10.1021/acs.jafc.8b06893. PubMed DOI
Chen R., Huang X., Li J., Shan S., Lai W., Xiong Y. A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157:H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Anal. Chim. Acta. 2016;947:50–57. doi: 10.1016/j.aca.2016.10.017. PubMed DOI
Fang Z., Wu W., Lu X., Zeng L. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens. Bioelectron. 2014;56:192–197. doi: 10.1016/j.bios.2014.01.015. PubMed DOI
Ravindranath S.P., Mauer L.J., Deb-Roy C., Irudayaraj J. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal. Chem. 2009;81:2840–2846. doi: 10.1021/ac802158y. PubMed DOI
Wu W., Zhao S., Mao Y., Fang Z., Lu X., Zeng L. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta. 2014;861:62–68. doi: 10.1016/j.aca.2014.12.041. PubMed DOI
Houhoula D.P., Charvalos E., Konteles S., Koussissis S., Lougovois V., Papaparaskevas J. A simple gold nanoprobe assay for the identification of Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritidis in food specimens. J. Food Res. 2017;6:134–139. doi: 10.5539/jfr.v6n4p134. DOI
Chinnappan R., AlAmer S., Eissa S., Rahamn A.A., Salah K.M.A., Zourob M. Fluorometricgrapheneoxide-baseddetection of Salmonellaenteritis using a truncatedDNAaptamer. Mikrochim. Acta. 2017;185:61. doi: 10.1007/s00604-017-2601-9. PubMed DOI
Khang J., Kim D., Chung K.W., Lee J.H. Chemiluminescent aptasensor capable of rapidly quantifying Escherichia coli O157:H7. Talanta. 2016;147:177–183. doi: 10.1016/j.talanta.2015.09.055. PubMed DOI
Mak A.C., Osterfeld S.J., Yu H., Wang S.X., Davis R.W., Jejelowo O.A., Pourmand N. Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens. Bioelectron. 2010;25:1635–1639. doi: 10.1016/j.bios.2009.11.028. PubMed DOI PMC
Mollasalehi H., Yazdanparast R. An improved non-crosslinking gold nanoprobe-NASBA based on 16S rRNA for rapid discriminative bio-sensing of major salmonellosis pathogens. Biosens. Bioelectron. 2013;47:231–236. doi: 10.1016/j.bios.2013.03.012. PubMed DOI
Oaew S., Charlermroj R., Pattarakankul T., Karoonuthaisiri N. Gold nanoparticles/horseradish peroxidase encapsulated polyelectrolyte nanocapsule for signal amplification in Listeria monocytogenes detection. Biosens. Bioelectron. 2012;34:238–243. doi: 10.1016/j.bios.2012.02.011. PubMed DOI
Rusinek R., Gancarz M., Krekora M., Nawrocka A. A Novel method for generation of a fingerprint using electronic nose on the example of Rapeseed spoilage. J. Food Sci. 2019;84:51–58. doi: 10.1111/1750-3841.14400. PubMed DOI
Rusinek R., Gancarz M., Nawrocka A. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. LWT Food Sci. Technol. 2020;117:108665. doi: 10.1016/j.lwt.2019.108665. DOI
Gupta S., Kaushal A., Kumar A., Kumar D. Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human. Int. J. Biol. Macromol. 2017;5:905–911. doi: 10.1016/j.ijbiomac.2017.07.126. PubMed DOI
Saini K., Kaushal A., Gupta S., Kumar D. Rapid detection of Salmonella enterica in raw milk samples using Stn gene-based biosensor. 3 Biotech. 2019;9:425. doi: 10.1007/s13205-019-1957-4. PubMed DOI PMC
Saini K., Kaushal A., Gupta S., Kumar D. Multiplexed Stn and PlcA based specific genetic marker for early detection of Salmonella enterica and Listeria monocytogenes in milk samples. Ann. Univ. Dunarea Jos Galati. 2019;43:9–20. doi: 10.35219/foodtechnology.2019.2.01. DOI
Modern Trends and Applications of Intelligent Methods in Biomedical Signal and Image Processing
Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review