Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GAČR 18-05886S
Czech Science Foundation
RVO 67985939
Czech Academy of Sciences
PubMed
33043410
PubMed Central
PMC7548138
DOI
10.1007/s00572-020-00989-1
PII: 10.1007/s00572-020-00989-1
Knihovny.cz E-zdroje
- Klíčová slova
- Culture-dependent approach, Ericaceae, Ericoid mycorrhizal fungal diversity, In vitro resynthesis, Isolate identification, Microscopy, Mycobiont isolation, Plating of surface-sterilized root segments,
- MeSH
- Ericaceae * MeSH
- kořeny rostlin MeSH
- mykorhiza * MeSH
- rostliny MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite decades of intensive research (especially from 1970s to 1990s), the ericoid mycorrhizal (ErM) hair root is still largely terra incognita and this simplified guide is intended to revive and promote the study of its mycobiota. Basic theoretical knowledge on the ErM symbiosis is summarized, followed by practical advices on Ericaceae root sample collection and handling, microscopic observations and photo-documentation of root fungal colonization, mycobiont isolation, maintenance and identification and resynthesis experiments with ericoid plants. The necessity of a proper selection of the root material and its surface sterilization prior to mycobiont isolation is stressed, together with the need of including suitable control treatments in inoculation experiments. The culture-dependent approach employing plating of single short (~ 2 mm) hair root segments on nutrient media is substantiated as a useful tool for characterization of Ericaceae root-associated fungal communities; it targets living mycelium and provides metabolically active cultures that can be used in physiological experiments and taxonomic studies, thus providing essential reference material for culture-independent approaches. On the other hand, it is stressed that not every mycobiont isolated from an ericoid hair root necessarily represent an ErM fungus. Likewise, not every intracellular hyphal coil formed in the Ericaceae rhizodermis necessarily represents the ErM symbiosis. Taxonomy of the most important ericoid mycobionts is updated, mutualism in the ErM symbiosis is briefly discussed from the mycobiont perspective, and some interesting lines of possible future research are highlighted.
Zobrazit více v PubMed
Abarenkov K, Nilsson RH, Larsson K-H, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 2010;186:281–285. PubMed
Afanasiev MM. Method of isolating single hyphal tips of Actinomyces. Phytopathology. 1937;27:1182–1183.
Agerer R, Ammirati J, Blanz P, et al. Always deposit vouchers. Mycol Res. 2000;104:642–644.
Allen TR, Millar T, Berch SM, Berbee ML. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol. 2003;160:255–272. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Baral H-O, Krieglsteiner L. Hymenoscyphus subcarneus, a little known bryicolous discomycete found in the Bialowieza National Park. Acta Mycol. 2006;41:11–20.
Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2013;41:D36–D42. PubMed PMC
Boesenberg-Smith KA, Pessarakli MM, Wolk DM. Assessment of DNA yield and purity: an overlooked detail of PCR troubleshooting. Clin Microbiol Newsl. 2012;34(1):3–6.
Bonfante-Fasolo P, Gianinazzi-Pearson V. Ultrastructural aspects of endomycorrhiza in the Ericaceae I: Naturally infected hair roots of Calluna vulgaris. New Phytol. 1979;83:739–744.
Brown W. Two mycological methods. I. A simple method of freeing fungal cultures from bacteria. Ann Bot. 1924;38:401–402.
Brown W. Two mycological methods. II. A method of isolating single strains of fungi by cutting out a hyphal tip. Ann Bot. 1924;38:402–404.
Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. Canberra: Australian Centre for International Agricultural Research; 1996.
Bruzone MC, Fontenla SB, Vohník M. Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia. Argentina Mycorrhiza. 2015;25:25–40. PubMed
Bruzone MC, Fehrer J, Fontenla SB, Vohník M. First record of Rhizoscyphus ericae in Southern Hemisphere’s Ericaceae. Mycorrhiza. 2017;27:147–163. PubMed
Cairney JWG, Ashford AE. Biology of mycorrhizal associations of epacrids (Ericaceae) New Phytol. 2002;154:305–326. PubMed
Cairney JWG, Meharg AA. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci. 2003;54:735–740.
Chilvers GA, Douglass PA, Lapeyrie FF. A paper-sandwich technique for rapid synthesis of ectomycorrhiza. New Phytol. 1986;103:397–402.
Dalpé Y. Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol. 1986;103:391–396.
de Hoog GS, van den Ende AHGG. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41:183–189. PubMed
Dighton J, Coleman DC. Phosphorus relations of roots and mycorrhizas of Rhododendron maximum L. in the southern Appalachians. North Carolina Mycorrhiza. 1992;1:175–184.
Donachie SP, Foster JS, Brown MV. Culture clash: challenging the dogma of microbial diversity. ISME J. 2007;1:97–102. PubMed
Duckett JG, Read DJ. Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associations in vitro. New Phytol. 1995;129:439–447.
Duclos JL, Fortin JA. Effect of glucose and active charcoal on in vitro synthesis of ericoid mycorrhiza with Vaccinium spp. New Phytol. 1983;94:95–102.
Duddridge J, Read DJ. An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. Can J Bot. 1982;60:2345–2356.
Edgar RC. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ. 2018;6:e4652. PubMed PMC
Egger KN, Sigler L. Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia. 1993;85:219–230.
Fal MA, Majada MP, Sánchez Tamés R. Physical environment in non-ventilated culture vessels affects in vitro growth and morphogenesis of several cultivars of Dianthus caryophyllus L. Vitro Cell Dev Biol-Plant. 2002;38:589–594.
Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud Mycol. 2019;92:195–225. PubMed PMC
Floyd R, Abebe E, Papert A, Blaxter M. Molecular barcodes for soil nematode identification. Mol Ecol. 2002;11:839–850. PubMed
Foster ZSL, Weiland JE, Scagel CF, Grünwald NJ. The composition of the fungal and oomycete microbiome of Rhododendron roots under varying growth conditions, nurseries, and cultivars. Phytobiomes J. 2020 doi: 10.1094/PBIOMES-09-19-0052-R. DOI
Freudenstein JV, Broe MB, Feldenkris ER. Phylogenetic relationships at the base of Ericaceae: Implications for vegetative and mycorrhizal evolution. Taxon. 2016;65:794–804.
Fraymouth J. Haustoria of the Peronosporales. Trans Brit Mycol Soc. 1956;39:79–107.
Fujimura KE, Egger KN. Host plant and environment influence community assembly of High Arctic root-associated fungal communities. Fungal Ecol. 2012;5:409–418.
Gams W, Hoekstra ES, Aptroot A. CBS Course of Mycology. 4. Baarn: Centraalbureau voor Schimmelcultures; 1998.
Garnica S, Schön MA, Abarenkov K et al. (2016) Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol Ecol 92:fiw045 PubMed
Gazis R, Rehner S, Chaverri P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol. 2011;20:3001–3013. PubMed
Gemma JN, Koske RE. Mycorrhizae in recent volcanic substrates in Hawaii. Amer J Bot. 1990;77:1193–1200. PubMed
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytol. 1980;84:489–500.
Goulart BL, Schroeder ML, Demchak K, et al. Blueberry mycorrhizae: current knowledge and future directions. Acta Hortic. 1993;346:230–239.
Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 2009;182:359–366. PubMed
Grelet G, Martino E, Dickie IA, Tajuddin R, Artz R (2016) Ecology of ericoid mycorrhizal fungi: What insight have we gained with molecular tools and what's missing? In: Martin FM (ed) Molecular mycorrhizal symbiosis. John Wiley & Sons, Hoboken
Grunewaldt-Stöcker G, von den Berg C, Knopp J, von Alten H. Interactions of ericoid mycorrhizal fungi and root pathogens in Rhododendron: In vitro tests with plantlets in sterile liquid culture. Plant Root. 2013;7:33–48.
Grunewaldt-Stöcker G, von Alten H. Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus? Mycorrhiza. 2016;26:429–440. PubMed
Grünig CR (2004) Population biology of the tree-root endophyte Phialocephala fortinii. Doctoral dissertation. Swiss Federal Institute of Technology, Zürich
Grünig CR, Brunner PC, Duò A, Sieber TN. Suitability of methods for species recognition in the Phialocephala fortinii–Acephala applanata species complex using DNA analysis. Fungal Genet Biol. 2007;44:773–788. PubMed
Grünig CR, Queloz V, Sieber T, Holdenrieder O. Dark septate endophytes (DSE) of the Phialocephala fortinii s. l.—Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany. 2008;86:1355–1369.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Hallmann J, Berg G, Schulz B. Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN, editors. Microbial root endophytes. Berlin Heidelberg: Springer Verlag; 2006. pp. 299–319.
Hamim A, Miché L, Douaik A, et al. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. C R Biol. 2017;340:226–237. PubMed
Harley JL. The biology of mycorrhiza. London: Leonard Hill; 1959.
Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc London [Biol] 2003;270:313–321. PubMed PMC
Heinonen-Tanski H, Holopainen T (1991) Maintenance of ectomycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Method Microbiol 23:413–422
Hopple JS, Vilgalys R. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol. 1999;13:1–19. PubMed
Huang C, Chen C. Physical properties of culture vessels for plant tissue culture. Biosyst Eng. 2005;91:501–511.
Karsch-Mizrachi I, Nakamura Y, Cochrane G, et al. The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res. 2018;46:D48–D51. PubMed PMC
Knapp DG, Németh JB, Barry K, et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. 2018;8:6321. PubMed PMC
Kohn LM, Stasovski E. The mycorrhizal status of plants at Alexandra Fiord, Ellesmere Island, Canada, a High Arctic site. Mycologia. 1990;82:23–35.
Kohout P, Sýkorová Z, Bahram M, et al. Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza. 2011;21:403–412. PubMed
Kolařík M, Vohník M. When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol. 2018;122:1–18. PubMed
Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–5277. PubMed
Koske RE, Gemma JN, Englander L. Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. Amer J Bot. 1990;77:64–68.
Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ. From rhizoids to roots? Experimental evidence of mutualism between liverworts¨and ascomycete fungi. Ann Bot. 2018;121:221–227. PubMed PMC
Kron KA, Judd WS, Stevens PF, et al. Phylogenetic classification of Ericaceae: Molecular and morphological evidence. Bot Rev. 2002;68:335–423.
Kron KA, Luteyn JL. Origins and biogeographic patterns in Ericaceae: New insights from recent phylogenetic analyses. Biol Skr. 2005;55:479–500.
Largent DL, Sugihara N, Wishner C. Occurrence of mycorrhizae on ericaceous and pyrolaceous plants in northern California. Can J Bot. 1980;58:2274–2279.
Leake JR, Read DJ (1991) Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Method Microbiol 23:435–459
Lorberau KE, Botnen SS, Mundra S, et al. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza. 2017;27:513–524. PubMed
Lukešová T, Kohout P, Větrovský T, Vohník M. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS ONE. 2015;10:e0124752. PubMed PMC
Luteyn JL. Diversity, adaptation, and endemism in Neotropical Ericaceae: biogeographical patterns in the Vaccinieae. Bot Rev. 2002;68:55–87.
Malloch D. Moulds: their isolation, cultivation and identification. Toronto: University of Toronto Press; 1981.
Martino E, Morin E, Grelet G-A, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. PubMed
Marx DH. Influence of ectotrophic mycorrhizal fungi on resistance of pine roots to pathogenic infections I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology. 1969;59:153–163. PubMed
Massicotte HB, Melville LH, Peterson RL. Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot. 2005;83:1057–1064.
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501. PubMed
McLean CB, Lawrie AC. Patterns of root colonization in Epacridaceous plants collected from different sites. Ann Bot. 1996;77:405–411.
McLean CB, Anthony J, Collins RA, Steinke E, Lawrie AC. First synthesis of ericoid mycorrhizas in the Epacridaceae under axenic conditions. New Phytol. 1998;139:589–593.
Midgley DJ, Chambers SM, Cairney JWG. Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system. Aust J Bot. 2002;50:559–565.
Midgley DJ, Chambers SM, Cairney JWG. Distribution of ericoid mycorrhizal endophytes and root-associated fungi in neighbouring Ericaceae plants in the field. Plant Soil. 2004;259:137–151.
Midgley DJ, Rosewarne CP, Greenfield P, et al. Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza. 2016;26:345–352. PubMed
Midgley DJ, Greenfield P, Bissett A, Tran-Dinh N. First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root-associated fungi. Mycorrhiza. 2017;27:587–594. PubMed
Midgley DJ, Sutcliffe B, Greenfield P, Tran-Dinh N. Gamarada debralockiae gen. nov. sp. nov.–the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza. 2018;28:379–389. PubMed
Molina R, Palmer JG. Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St. Paul: American Phytopathology Society; 1982. pp. 115–129.
Monreal M, Berch SM, Berbee M. Molecular diversity of ericoid mycorrhizal fungi. Can J Bot. 1999;77:1580–1594.
Newell SY, Fell JW (1982) Surface sterilization and the active mycoflora of leaves of a seagrass. Bot Mar 25:339–346
Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Kõljalg U. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE. 2006;1:e59. PubMed PMC
Nilsson RH, Tedersoo L, Abarenkov K, et al. Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys. 2012;4:37–63.
Nichols RV, Vollmers C, Newsom LA, et al. Minimizing polymerase biases in metabarcoding. Mol Ecol Resour. 2018;18:927–939. PubMed
Obase K, Matsuda Y, Ito S. Enkianthus campanulatus (Ericaceae) is commonly associated with arbuscular mycorrhizal fungi. Mycorrhiza. 2013;23:199–208. PubMed
Obase K, Matsuda Y. Culturable fungal endophytes in roots of Enkianthus campanulatus (Ericaceae) Mycorrhiza. 2014;24:635–644. PubMed
Okuda A, Yamato M, Iwase K. The mycorrhiza of Schizocodon soldanelloides var. magnus (Diapensiaceae) is regarded as ericoid mycorrhiza from its structure and fungal identities. Mycoscience. 2011;52:425–430.
Pearson V, Read D. Biology of mycorrhiza in the Ericaceae II: transport of carbon and phosphorus by endophyte and mycorrhiza. New Phytol. 1973;72:1325–1331.
Pearson V, Read DJ. Biology of mycorrhiza in Ericaceae I: Isolation of endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol. 1973;72:371–379.
Perotto S, Nepote-Fus P, Saletta L, Bandi C, Young JPW. A diverse population of introns in the nuclear ribosomal genes of ericoid mycorrhizal fungi includes elements with sequence similarity to endonuclease-coding genes. Mol Biol Evol. 2000;17:44–59. PubMed
Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53.
Peterson RL, Chakravarty P (1991) Techniques in synthesizing ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Method Microbiol 23:75–106
Peterson RL, Massicotte HB. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot. 2004;82:1074–1088.
Peterson RL, Massicotte HB, Melville LH. Mycorrhizas: anatomy and cell biology. Ottawa: NRC Research Press; 2004.
Peterson RL, Wagg C, Pautler M. Associations between microfungal endophytes and roots: do structural features indicate function? Botany. 2008;86:445–456.
Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 1970;55:158–161.
Porras-Alfaro A, Liu K-L, Kuske CR, Xie G. From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl Environ Microb. 2014;80:829–840. PubMed PMC
Rains KC, Nadkarni NM, Bledsoe CS. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza. 2003;13:257–264. PubMed
Rajendren RB. Evolution of haustoria in tropical rust fungi. Bull Torrey Bot Club. 1972;99:84–88.
Rice AV, Currah RS. Oidiodendron maius: saprobe in Sphagnum peat, mutualist in ericaceous roots? In: Schulz B, Boyle C, Sieber TN, editors. Microbial root endophytes. Berlin Heidelberg: Springer Verlag; 2006. pp. 227–246.
Read DJ. The biology of mycorrhiza in the Ericales. Can J Bot. 1983;61:985–1004.
Read DJ. The structure and function of the ericoid mycorrhizal root. Ann Bot. 1996;77:365–374.
Read DJ, Kerley S. The status and function of ericoid mycorrhizal systems. In: Varma A, Hock B, editors. Mycorrhiza–structure, function, molecular biology and biotechnology. 2. Berlin Heidelberg: Springer Verlag; 1999. pp. 499–520.
Read DJ, Leake JR, Perez-Moreno J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot. 2004;82:1243–1263.
Repáč I. Ectomycorrhizal inoculum and inoculation techniques. In: Rai M, Varma A, editors. Diversity and biotechnology of ectomycorrhizae. Berlin Heidelberg: Springer Verlag; 2011. pp. 43–63.
Ritz K. The Plate Debate: Cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–362. PubMed
Sadowsky JJ, Hanson EJ, Schilder AMC. Root colonization by ericoid mycorrhizae and dark septate endophytes in organic and conventional blueberry fields in Michigan. Int J Fruit Sci. 2012;12:169–187.
Schild DE, Kennedy A, Stuart MR. Isolation of symbiont and associated fungi from ectomycorrhizas of Sitka spruce. Eur J For Path. 1988;18:51–61.
Schlegel M, Münsterkötter M, Güldener U, et al. Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics. 2016;17:1015. PubMed PMC
Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109:6241–6246. PubMed PMC
Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005;109:661–686. PubMed
Seifert KA, Rossman AY. How to describe a new fungal species. IMA Fungus. 2010;1:109–116. PubMed PMC
Seifert KA. When should we describe species? IMA Fungus. 2017;8:37–39.
Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol. 2007;174:864–887. PubMed
Selosse MA, Vohník M, Chauvet E. Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol. 2008;178:3–7. PubMed
Setaro S, Weiss M, Oberwinkler F, Kottke I. Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol. 2006;169:355–365. PubMed
Sieber TN. Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U, editors. Plant roots – the hidden half. 3. New York: Marcel Dekker; 2002. pp. 887–917.
Smith JE, Molina R, Perry DA. Occurrence of ectomycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol. 1995;129:73–81. PubMed
Smith SE, Read DJ. Ericoid mycorrhizas. In: Smith SE, Read DJ, editors. Mycorrhizal symbiosis. 3. London: Academic Press; 2008. pp. 389–418.
Smith SE, Read DJ. The roles of mycorrhizas in the successional processes and in selected biomes. In: Smith SE, Read DJ, editors. Mycorrhizal symbiosis. 3. London: Academic Press; 2008. pp. 525–572.
Steinke E, Williams PG, Ashford AE. The structure and fungal associates of mycorrhizas in Leucopogon parviflorus (Andr.) Lindl. Ann Bot. 1996;77:413–419.
Stevens PF, Luteyn JL, Oliver EGH, et al. Ericaceae. In: Kubitzki K, et al., editors. The families and genera of vascular plants. Berlin: Springer; 2004. pp. 145–194.
Stribley DP, Read DJ, Hunt R. The biology of mycorrhiza in the Ericaceae V. The effect of mycorrhizal infection, soil type and partial soil-sterilization (by gamma-irradiation) on growth of cranberry (Vaccinium macrocarpon Ait.) New Phytol. 1975;75:119–130.
Štorchová H, Hrdličková R, Chrtek J, Tetera M, Fitze D, et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon. 2000;49:79–84.
Stroheker S, Queloz V, Sieber TN. Spatial and temporal dynamics in the Phialocephala fortinii s. l. – Acephala applanata species complex (PAC) Plant Soil. 2016;407:231–241.
Summerbell RC. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol. 2005;53:121–145.
Tedersoo L, Partel K, Jairus T, Gates G, Poldmaa K, Tamm H. Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microb. 2009;11:3166–3178. PubMed
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Urcelay C. Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza. 2002;12:89–92. PubMed
Usuki F, Narisawa K. Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospira within roots of Rhododendron obsutum var. kaempferi. Mycorrhiza. 2005;15:61–64. PubMed
Vierheilig H, Coughlan AP, Wyss U, Piché Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol. 1998;64:5004–5007. PubMed PMC
Vierheilig H, Schweiger P, Brundrett MC. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant. 2005;125:393–404.
Villarreal-Ruiz L, Anderson IC, Alexander IJ. Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol. 2004;164:183–192. PubMed
Vohník M, Lukančič S, Bahor E, Regvar M, VosátkaM VD. Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot. 2003;38:191–200.
Vohník M, Albrechtová J, Vosátka M. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in Rhododendron cv. Azurro Symbiosis. 2005;40:87–96.
Vohník M, Fendrych M, Albrechtová J, Vosátka M. Intracellular colonization of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis. Folia Microbiol. 2007;52:407–414. PubMed
Vohník M, Albrechtová J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot. 2011;46:373–386.
Vohník M, Sadowsky JJ, Kohout P, Lhotáková Z, Nestby R, Kolařík M. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS ONE. 2012;7:e39524. PubMed PMC
Vohník M, Sadowsky JJ, Lukešová T, Albrechtová J, Vosátka M. Inoculation with wood decomposing basidiomycete, but not with root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil. 2012;355:341–352.
Vohník M, Mrnka L, Lukešová T, et al. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 2013;6:281–292.
Vohník M, Borovec O, Župan I, Vondrášek D, Petrtýl M, Sudová R. Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza. 2015;25:663–672. PubMed
Vohník M, Pánek M, Fehrer J, Selosse M-A. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales) Mycorrhiza. 2016;26:831–846. PubMed
Vohník M, Borovec O, Kolařík M. Communities of cultivable root mycobionts of the seagrass Posidonia oceanica in the northwest Mediterranean Sea are dominated by a hitherto undescribed pleosporalean dark septate endophyte. Microb Ecol. 2016;71:442–451. PubMed
Vohník M, Borovec O, Župan I, Kolařík M, Sudová R. Fungal root symbionts of the seagrass Posidonia oceanica in the central Adriatic Sea revealed by microscopy, culturing and 454-pyrosequencing. Mar Ecol Prog Ser. 2017;583:107–120.
Vohník M, Borovec O, Kolaříková Z, Sudová R, Réblová M. Extensive sampling and high-throughput sequencing reveal Posidoniomyces atricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys. 2019;55:59–86. PubMed PMC
Vrålstad T, Fossheim T, Schumacher T. Piceirhiza bicolorata – the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol. 2000;145:549–563. PubMed
Vrålstad T, Myhre E, Schumacher T. Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol. 2002;155:131–148. PubMed
Vrålstad T. Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol. 2004;164:7–10. PubMed
Vu D, Groenewald M, de Vries M, et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol. 2019;92:135–154. PubMed PMC
Walker JF, Aldrich-Wolfe L, Riffel A, et al. Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol. 2011;191:515–527. PubMed
Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos. 1995;73:274–276.
Xiao G, Berch M. Diversity and abundance of ericoid mycorrhizal fungi of Gaultheria shallon on forest clearcuts. Can J Bot. 1996;74:337–346.
Xu L, Li S, Shabala S, Jian T, Zhang W. Plants grown in Parafilm-wrapped Petri dishes are stressed and possess altered gene expression profile. Front Plant Sci. 2019;10:637. PubMed PMC
Zamora JC, Svensson M, Kirschner R, et al. Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus. 2018;9:167–175. PubMed PMC
Zhang C, Yin LJ, Dai SL. Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza. 2009;19:417–423. PubMed
Baba T, Hirose D (2020) Morphological characteristics of rhizodermal colonization by Leohumicola species in an ericaceous host. Plant Root 14:1–10