Extraordinary diversity of telomeres, telomerase RNAs and their template regions in Saccharomycetaceae
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34140564
PubMed Central
PMC8211666
DOI
10.1038/s41598-021-92126-x
PII: 10.1038/s41598-021-92126-x
Knihovny.cz E-zdroje
- MeSH
- benzothiazoly metabolismus MeSH
- fluorescence MeSH
- G-kvadruplexy MeSH
- genetická variace * MeSH
- genetické matrice * MeSH
- reprodukovatelnost výsledků MeSH
- RNA genetika MeSH
- Saccharomycetales genetika MeSH
- sekvence nukleotidů MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzothiazoly MeSH
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
- thioflavin T MeSH Prohlížeč
Telomerase RNA (TR) carries the template for synthesis of telomere DNA and provides a scaffold for telomerase assembly. Fungal TRs are long and have been compared to higher eukaryotes, where they show considerable diversity within phylogenetically close groups. TRs of several Saccharomycetaceae were recently identified, however, many of these remained uncharacterised in the template region. Here we show that this is mainly due to high variability in telomere sequence. We predicted the telomere sequences using Tandem Repeats Finder and then we identified corresponding putative template regions in TR candidates. Remarkably long telomere units and the corresponding putative TRs were found in Tetrapisispora species. Notably, variable lengths of the annealing sequence of the template region (1-10 nt) were found. Consequently, species with the same telomere sequence may not harbour identical TR templates. Thus, TR sequence alone can be used to predict a template region and telomere sequence, but not to determine these exactly. A conserved feature of telomere sequences, tracts of adjacent Gs, led us to test the propensity of individual telomere sequences to form G4. The results show highly diverse values of G4-propensity, indicating the lack of ubiquitous conservation of this feature across Saccharomycetaceae.
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
Institut Botànic de Barcelona Passeig del Migdia s n 08038 Barcelona Catalonia Spain
Institute of Biophysics Academy of Sciences of the Czech Republic Brno 61265 Czech Republic
Mendel Centre for Plant Genomics and Proteomics CEITEC Masaryk University Brno 62500 Czech Republic
Zobrazit více v PubMed
Lim CJ, Cech TR. Shaping human telomeres: From shelterin and CST complexes to telomeric chromatin organization. Nat. Rev. Mol. Cell Biol. 2021 doi: 10.1038/s41580-021-00328-y. PubMed DOI PMC
Lu W, Zhang Y, Liu D, Songyang Z, Wan M. Telomeres-structure, function, and regulation. Exp. Cell Res. 2013;319:133–141. doi: 10.1016/j.yexcr.2012.09.005. PubMed DOI PMC
Shay JW. Telomeres and aging. Curr. Opin. Cell Biol. 2018;52:1–7. doi: 10.1016/j.ceb.2017.12.001. PubMed DOI
Victorelli S, Passos JF. Telomeres and cell senescence—Size matters not. EBioMedicine. 2017;21:14–20. doi: 10.1016/j.ebiom.2017.03.027. PubMed DOI PMC
Blackburn EH. Telomere states and cell fates. Nature. 2000;408:53–56. doi: 10.1038/35040500. PubMed DOI
Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: No longer a lagging strand problem? Science. 1995;269:1533–1534. doi: 10.1126/science.7545310. PubMed DOI
Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Mol. Cell. 2014;53:954–964. doi: 10.1016/j.molcel.2014.02.030. PubMed DOI
Wellinger RJ. In the end, what's the problem? Mol. Cell. 2014;53:855–856. doi: 10.1016/j.molcel.2014.03.008. PubMed DOI
Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–413. doi: 10.1016/0092-8674(85)90170-9. PubMed DOI
Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6:584–593. doi: 10.1158/2159-8290.CD-16-0062. PubMed DOI PMC
Blasco MA. Telomerase beyond telomeres. Nat. Rev. Cancer. 2002;2:627–633. doi: 10.1038/nrc862. PubMed DOI
Koonin EV. The origin of introns and their role in eukaryogenesis: A compromise solution to the introns-early versus introns-late debate? Biol. Direct. 2006;1:22. doi: 10.1186/1745-6150-1-22. PubMed DOI PMC
Nosek J, Kosa P, Tomaska L. On the origin of telomeres: A glimpse at the pre-telomerase world. BioEssays. 2006;28:182–190. doi: 10.1002/bies.20355. PubMed DOI
Schrumpfova PP, Fajkus J. Composition and function of telomerase-a polymerase associated with the origin of eukaryotes. Biomolecules. 2020;10:1425. doi: 10.3390/biom10101425. PubMed DOI PMC
Chan SRWL, Blackburn EH. Telomeres and telomerase. Philos. Trans. R. Soc. B. 2004;359:109–121. doi: 10.1098/rstb.2003.1370. PubMed DOI PMC
Rubin GM. Isolation of a telomeric DNA sequence from Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 1978;42(Pt 2):1041–1046. doi: 10.1101/sqb.1978.042.01.104. PubMed DOI
Traverse KL, Pardue ML. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc. Natl. Acad. Sci. U. S. A. 1988;85:8116–8120. doi: 10.1073/pnas.85.21.8116. PubMed DOI PMC
Fajkus P, Peska V, Fajkus J, Sykorova E. Origin and fates of TERT gene copies in polyploid plants. Int. J. Mol. Sci. 2021;22:1783. doi: 10.3390/ijms22041783. PubMed DOI PMC
Peska V, Garcia S. Origin, diversity, and evolution of telomere sequences in plants. Front. Plant Sci. 2020;11:117. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC
Schrumpfova PP, Fojtova M, Fajkus J. Telomeres in plants and humans: Not so different, not so similar. Cells-Basel. 2019;8:58. doi: 10.3390/cells8010058. PubMed DOI PMC
Shampay J, Szostak JW, Blackburn EH. DNA sequences of telomeres maintained in yeast. Nature. 1984;310:154–157. doi: 10.1038/310154a0. PubMed DOI
Walmsley RW, Chan CS, Tye BK, Petes TD. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature. 1984;310:157–160. doi: 10.1038/310157a0. PubMed DOI
Cervenak F, Sepsiova R, Nosek J, Tomaska L. Step-by-step evolution of telomeres: Lessons from yeasts. Genome Biol. Evol. 2020 doi: 10.1093/gbe/evaa268. PubMed DOI PMC
Cutova M, et al. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics. 2020;112:1897–1901. doi: 10.1016/j.ygeno.2019.11.002. PubMed DOI
Moye AL, et al. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 2015;6:7643. doi: 10.1038/ncomms8643. PubMed DOI PMC
Ares M, Jr, Chakrabarti K. Stuttering against marginotomy. Nat. Struct. Mol. Biol. 2008;15:18–19. doi: 10.1038/nsmb0108-18. PubMed DOI PMC
Fajkus P, et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC
Peska V, et al. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. J. Exp. Bot. 2020;71:5786–5793. doi: 10.1093/jxb/eraa293. PubMed DOI
Kachouri-Lafond R, et al. Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. FEBS Lett. 2009;583:3605–3610. doi: 10.1016/j.febslet.2009.10.034. PubMed DOI
McCormick-Graham M, Romero DP. A single telomerase RNA is sufficient for the synthesis of variable telomeric DNA repeats in ciliates of the genus Paramecium. Mol. Cell Biol. 1996;16:1871–1879. doi: 10.1128/mcb.16.4.1871. PubMed DOI PMC
Feng J, et al. The RNA component of human telomerase. Science. 1995;269:1236–1241. doi: 10.1126/science.7544491. PubMed DOI
Singer MS, Gottschling DE. TLC1: Template RNA component of Saccharomyces cerevisiae telomerase. Science. 1994;266:404–409. doi: 10.1126/science.7545955. PubMed DOI
Dandjinou AT, et al. A phylogenetically based secondary structure for the yeast telomerase RNA. Curr. Biol. 2004;14:1148–1158. doi: 10.1016/j.cub.2004.05.054. PubMed DOI
Gunisova S, et al. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA. 2009;15:546–559. doi: 10.1261/rna.1194009. PubMed DOI PMC
Tzfati Y, Fulton TB, Roy J, Blackburn EH. Template boundary in a yeast telomerase specified by RNA structure. Science. 2000;288:863–867. doi: 10.1126/science.288.5467.863. PubMed DOI
Waldl M, et al. TERribly difficult: Searching for telomerase RNAs in Saccharomycetes. Genes (Basel) 2018;9:372. doi: 10.3390/genes9080372. PubMed DOI PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC
Chen JL, Blasco MA, Greider CW. Secondary structure of vertebrate telomerase RNA. Cell. 2000;100:503–514. doi: 10.1016/s0092-8674(00)80687-x. PubMed DOI
Qi X, et al. The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res. 2013;41:450–462. doi: 10.1093/nar/gks980. PubMed DOI PMC
Xie M, et al. Structure and function of the smallest vertebrate telomerase RNA from teleost fish. J. Biol. Chem. 2008;283:2049–2059. doi: 10.1074/jbc.M708032200. PubMed DOI
Logeswaran D, Li Y, Podlevsky JD, Chen JJ. Monophyletic origin and divergent evolution of animal telomerase RNA. Mol. Biol. Evol. 2020 doi: 10.1093/molbev/msaa203. PubMed DOI PMC
Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Cohn M, McEachern MJ, Blackburn EH. Telomeric sequence diversity within the genus Saccharomyces. Curr. Genet. 1998;33:83–91. doi: 10.1007/s002940050312. PubMed DOI
Dietrich FS, et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science. 2004;304:304–307. doi: 10.1126/science.1095781. PubMed DOI
McEachern MJ, Blackburn EH. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature. 1995;376:403–409. doi: 10.1038/376403a0. PubMed DOI
Ortiz-Merino RA, et al. Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch. PLoS Biol. 2017;15:e2002128. doi: 10.1371/journal.pbio.2002128. PubMed DOI PMC
Seto AG, Livengood AJ, Tzfati Y, Blackburn EH, Cech TR. A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev. 2002;16:2800–2812. doi: 10.1101/gad.1029302. PubMed DOI PMC
Uchida W, Matsunaga S, Sugiyama R, Kawano S. Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet. Syst. 2002;77:63–67. doi: 10.1266/ggs.77.63. PubMed DOI
Tremousaygue D, et al. Internal telomeric repeats and 'TCP domain' protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J. 2003;33:957–966. doi: 10.1046/j.1365-313x.2003.01682.x. PubMed DOI
Farmery JHR, Smith ML, Diseases NB-R, Lynch AG. Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci. Rep. 2018;8:1300. doi: 10.1038/s41598-017-14403-y. PubMed DOI PMC
Bedrat A, Lacroix L, Mergny JL. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Bosoy D, Peng Y, Mian IS, Lue NF. Conserved N-terminal motifs of telomerase reverse transcriptase required for ribonucleoprotein assembly in vivo. J. Biol. Chem. 2003;278:3882–3890. doi: 10.1074/jbc.M210645200. PubMed DOI
Wang SS, Zakian VA. Sequencing of Saccharomyces telomeres cloned using T4 DNA polymerase reveals two domains. Mol. Cell Biol. 1990;10:4415–4419. doi: 10.1128/mcb.10.8.4415. PubMed DOI PMC
Forstemann K, Lingner J. Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep. 2005;6:361–366. doi: 10.1038/sj.embor.7400374. PubMed DOI PMC
Fulneckova J, et al. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol. Evol. 2013;5:468–483. doi: 10.1093/gbe/evt019. PubMed DOI PMC
Fajkus P, et al. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI
Peska V, et al. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI
Teixeira MT, Gilson E. Telomere maintenance, function and evolution: The yeast paradigm. Chromosome Res. 2005;13:535–548. doi: 10.1007/s10577-005-0999-0. PubMed DOI
Matsumoto S, Sugimoto N. New insights into the functions of nucleic acids controlled by cellular microenvironments. Top. Curr. Chem. (Cham) 2021;379:17. doi: 10.1007/s41061-021-00329-7. PubMed DOI
Wallgren M, et al. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase. Nucleic Acids Res. 2016;44:6213–6231. doi: 10.1093/nar/gkw349. PubMed DOI PMC
Jurikova K, et al. Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae. J. Biol. Chem. 2020;295:8958–8971. doi: 10.1074/jbc.RA120.012914. PubMed DOI PMC
Tran PL, Mergny JL, Alberti P. Stability of telomeric G-quadruplexes. Nucleic Acids Res. 2011;39:3282–3294. doi: 10.1093/nar/gkq1292. PubMed DOI PMC
Smith JS, et al. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 2011;18:478–485. doi: 10.1038/nsmb.2033. PubMed DOI PMC
Cohn M, Blackburn EH. Telomerase in yeast. Science. 1995;269:396–400. doi: 10.1126/science.7618104. PubMed DOI
Tran TD, et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI
Sykorova E, et al. Telomere variability in the monocotyledonous plant order Asparagales. Proc. Biol. Sci. 2003;270:1893–1904. doi: 10.1098/rspb.2003.2446. PubMed DOI PMC
McCormick-Graham M, Haynes WJ, Romero DP. Variable telomeric repeat synthesis in Paramecium tetraurelia is consistent with misincorporation by telomerase. EMBO J. 1997;16:3233–3242. doi: 10.1093/emboj/16.11.3233. PubMed DOI PMC
Peska V, Sitova Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods. 2017;114:16–27. doi: 10.1016/j.ymeth.2016.08.017. PubMed DOI
Brazda V, et al. G4Hunter web application: A web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–682. doi: 10.1093/nar/gkl253. PubMed DOI PMC
Vorlickova M, et al. Circular dichroism and guanine quadruplexes. Methods. 2012;57:64–75. doi: 10.1016/j.ymeth.2012.03.011. PubMed DOI
Renaud de la Faverie A, Guedin A, Bedrat A, Yatsunyk LA, Mergny JL. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014;42:e65. doi: 10.1093/nar/gku111. PubMed DOI PMC
Shen XX, et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell. 2018;175:1533–1545. doi: 10.1016/j.cell.2018.10.023. PubMed DOI PMC
Cervenak F, et al. Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci. Rep. 2019;9:13365. doi: 10.1038/s41598-019-49628-6. PubMed DOI PMC
Characterisation of the Arabidopsis thaliana telomerase TERT-TR complex
TeloBase: a community-curated database of telomere sequences across the tree of life
Primary Scientific Literature Represents an Essential Source of Telomeric Repeat Sequences
Identification of the Sequence and the Length of Telomere DNA
Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis
Editorial: Telomere Flexibility and Versatility: A Role of Telomeres in Adaptive Potential