The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-08130S
Grantová Agentura České Republiky
e-INFRA CZ (ID:90140)
Ministerstvo Školství, Mládeže a Tělovýchovy
e-INFRA LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015085
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34361349
PubMed Central
PMC8348469
DOI
10.3390/ma14154155
PII: ma14154155
Knihovny.cz E-resources
- Keywords
- Fe3Al, ab initio, embrittlement, fracture, hydrogen, molecular dynamics, strength,
- Publication type
- Journal Article MeSH
We performed a quantum-mechanical molecular-dynamics (MD) study of Fe3Al with and without hydrogen atoms under conditions of uniaxial deformation up to the point of fracture. Addressing a long-lasting problem of hydrogen-induced brittleness of iron-aluminides under ambient conditions, we performed our density-functional-theory (DFT) MD simulations for T = 300 K (room temperature). Our MD calculations include a series of H concentrations ranging from 0.23 to 4 at.% of H and show a clear preference of H atoms for tetrahedral-like interstitial positions within the D03 lattice of Fe3Al. In order to shed more light on these findings, we performed a series of static lattice-simulations with the H atoms located in different interstitial sites. The H atoms in two different types of octahedral sites (coordinated by either one Al and five Fe atoms or two Al and four Fe atoms) represent energy maxima. Our structural relaxation of the H atoms in the octahedral sites lead to minimization of the energy when the H atom moved away from this interstitial site into a tetrahedral-like position with four nearest neighbors representing an energy minimum. Our ab initio MD simulations of uniaxial deformation along the ⟨001⟩ crystallographic direction up to the point of fracture reveal that the hydrogen atoms are located at the newly-formed surfaces of fracture planes even for the lowest computed H concentrations. The maximum strain associated with the fracture is then lower than that of H-free Fe3Al. We thus show that the hydrogen-related fracture initiation in Fe3Al in the case of an elastic type of deformation as an intrinsic property which is active even if all other plasticity mechanism are absent. The newly created fracture surfaces are partly non-planar (not atomically flat) due to thermal motion and, in particular, the H atoms creating locally different environments.
See more in PubMed
Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.
Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI
Xu Z., McLellan R. The solubility of hydrogen in Fe3Al-intermetallics. J. Phys. Chem. Solids. 1997;58:2127–2129. doi: 10.1016/S0022-3697(97)00155-8. DOI
Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI
Cheng X., Wan X. Hydrogen Diffusivity in a Fe3Al-Based Alloy. Scr. Mater. 1998;38:1505–1509. doi: 10.1016/S1359-6462(98)00075-X. DOI
Gu B., Chu W.Y., Qiao L.J. TEM observation on stress corrosion cracking of Fe3Al alloy in acetone and water. J. Mater. Sci. Lett. 1999;18:1291–1293. doi: 10.1023/A:1006650503369. DOI
Chen G., Liu C. Moisture induced environmental embrittlement of intermetallics. Int. Mater. Rev. 2001;46:253–270. doi: 10.1179/095066001771048718. DOI
Kattner U., Burton B. In: Al-Fe (Aluminium-Iron). Phase Diagrams of Binary Iron Alloys. Okamoto H., editor. ASM International; Materials Park, OH, USA: 1993. pp. 12–28.
Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI
Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI
Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI
Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D03 ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI
Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Castagna A., Stoloff N. Hydrogen embrittlement of Fe3Al alloys. Mater. Sci. Eng. A. 1995;192–193:399–406. doi: 10.1016/0921-5093(94)03240-8. DOI
Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI
Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI
Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kov. Mater. Met. Mater. 2018;56:205. doi: 10.4149/km_2018_4_205. DOI
Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI
Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI
Grigorchik A.N., Astrashab V.E., Kukareko V.A., Belotserkovsky M.A., Sosnovsky V.A. High-temperature heat treatment of hypersonic metallization coatings from pseudoalloy “Fe-Al”. Lett. Mater. 2021;11:198–203. doi: 10.22226/2410-3535-2021-2-198-203. DOI
Deevi S.C. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog. Mater. Sci. 2021;118:100769. doi: 10.1016/j.pmatsci.2020.100769. DOI
Tolochyn O.I., Baglyuk G.A., Tolochyna O.V., Evych Y.I., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Mater. Sci. 2021;56:499–508. doi: 10.1007/s11003-021-00456-y. DOI
Komarov O.N., Zhilin S.G., Predein V.V., Popov A.V. Mechanisms for Forming Iron-Containing Intermetallics Prepared by Aluminothermy and the Effect of Special Treatment Methods on their Properties. Metallurgist. 2020;64:810–821. doi: 10.1007/s11015-020-01058-w. DOI
Vodičková V., Švec M., Hanus P., Novák P., Záděra A., Keller V., Prokopčaková P.P. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides. Molecules. 2020;25:4268. doi: 10.3390/molecules25184268. PubMed DOI PMC
Luo X., Cao J., Meng G., Chuan Y., Yao Z., Xie H. Systematical investigation on the microstructures and tribological properties of Fe-Al laser cladding coatings. Appl. Surf. Sci. 2020;516:146121. doi: 10.1016/j.apsusc.2020.146121. DOI
Luo X., Cao J., Meng G., Yu F., Jiang Q., Zhang P., Xie H. Double Glow Plasma Surface Metallurgy Technology Fabricated Fe-Al-Cr Coatings with Excellent Corrosion Resistance. Coatings. 2020;10:575. doi: 10.3390/coatings10060575. DOI
Teker T., Yilmaz S.O. Synthesis and structural characterization of Fe based Ti+Ni3Al+Al2O3 reinforcement composite produced by mechanical alloying. Rev. Metal. 2020;56:e178. doi: 10.3989/revmetalm.178. DOI
Zhang X., Sun Y., Niu M., Shao M., Geng X. Microstructure and mechanical behavior of in situ TiC reinforced Fe3Al (Fe-23Al-3Cr) matrix composites by mechanical alloying and vacuum hot-pressing sintering technology. Vacuum. 2020;180:109544. doi: 10.1016/j.vacuum.2020.109544. DOI
Ghazanfari H., Blais C., Gariepy M., Savoie S., Schulz R., Alamdari H. Improving wear resistance of metal matrix composites using reinforcing particles in two length-scales: Fe3Al/TiC composites. Surf. Coat. Technol. 2020;386:125502. doi: 10.1016/j.surfcoat.2020.125502. DOI
Khodaei M. Characterization of Al2O3 in Fe3Al-30 vol.% Al2O3 Nanocomposite Powder Synthesized by Mechanochemical Process. J. Nanostruct. 2020;10:456–462. doi: 10.22052/JNS.2020.03.003. DOI
Altunin R.R., Moiseenko E.T., Zharkov S.M. Structural Phase Transformations during a Solid-State Reaction in a Bilayer Al/Fe Thin-Film Nanosystem. Phys. Solid State. 2020;62:200–205. doi: 10.1134/S1063783420010059. DOI
Tolochyn O.I., Tolochyna O.V., Bagliuk H.A., Yevych Y.I., Podrezov Y.M., Mamonova A.A. Influence of Sintering Temperature on the Structure and Properties of Powder Iron Aluminide Fe3Al. Powder Metall. Met. Ceram. 2020;59:150–159. doi: 10.1007/s11106-020-00150-9. DOI
Adler L., Fu Z., Koerner C. Electron beam based additive manufacturing of Fe3Al based iron aluminides—Processing window, microstructure and properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020;785:139369. doi: 10.1016/j.msea.2020.139369. DOI
Michalcova A., Ozkan M., Mikula P., Marek I., Knaislova A., Kopecek J., Vojtech D. The Influence of Powder Milling on Properties of SPS Compacted FeAl. Molecules. 2020;25:2263. doi: 10.3390/molecules25092263. PubMed DOI PMC
Peska M., Karczewski K., Rzeszotarska M., Polanski M. Direct Synthesis of Fe-Al Alloys from Elemental Powders Using Laser Engineered Net Shaping. Materials. 2020;13:531. doi: 10.3390/ma13030531. PubMed DOI PMC
Luo X., Cao J., Meng G., Zhou Y., Xie H. Long-range-ordered Fe3Al with excellent electromagnetic wave absorption. J. Mater. Sci. Mater. Electron. 2020;31:15608–15615. doi: 10.1007/s10854-020-04124-w. DOI
Ismail A., Bahanan W., Bin Hussain P., Saat A.M., Shaik N.B. Diffusion Bonding of Al-Fe Enhanced by Gallium. Processes. 2020;8:824. doi: 10.3390/pr8070824. DOI
Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI
Gonzales-Ormeno P., Petrilli H., Schön C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573–582. doi: 10.1016/S0364-5916(02)80009-8. DOI
Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI
Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI
Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC
Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI
Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI
Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI
Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC
Ju J., Kang M., Zhou Y., Yang C., Wang K., Li J., Wang R., Fu H., Wang J. First-principles investigations of the stability, electronic structures, mechanical properties and thermodynamic properties of FexAlyCz compounds in Fe-Cr-B-Al-C alloy. J. Phys. Chem. Solids. 2020;143 doi: 10.1016/j.jpcs.2020.109366. DOI
Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC
Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC
Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI
Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI
Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI
Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI
Friák M., Všianská M., Šob M. A Quantum–Mechanical Study of Clean and Cr—Segregated Antiphase Boundaries in Fe3Al. Materials. 2019;12:3954. doi: 10.3390/ma12233954. PubMed DOI PMC
Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI
Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI
Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.
Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Phys. B Condens. Matter. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI
Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC
Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI
Friák M., Černý M., Všianská M., Šob M. Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al. Materials. 2020;13:4884. doi: 10.3390/ma13214884. PubMed DOI PMC
Li Y., Liu Y., Yang J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint. Opt. Laser Technol. 2020;122:105875. doi: 10.1016/j.optlastec.2019.105875. DOI
Friák M., Černý M., Šob M. The impact of vibrational entropy on the segregation of Cu to antiphase boundaries in Fe3Al. Magnetochemistry. 2021;7 submitted for publication.
Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI
Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI
Lin J., Chu W., Hsiao C. Hydrogen induced cracking in Fe3Al + Cr. Scr. Metall. Mater. 1994;30:583–586. doi: 10.1016/0956-716X(94)90433-2. DOI
Tu J., Meng L., Liu M. Evaluation of Hydrogen Embrittlement Characteristics of Fe3Al Intermetallic Compounds. Scr. Mater. 1998;38:833–838. doi: 10.1016/S1359-6462(97)00534-4. DOI
Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI
Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI
Balasubramaniam R. Hydrogen in iron aluminides. J. Alloy. Compd. 2002;330–332:506–510. doi: 10.1016/S0925-8388(01)01630-9. DOI
Alven D., Stoloff N. The influence of composition on the environmental embrittlement of Fe3Al alloys. Mater. Sci. Eng. A. 1997;239–240:362–368. doi: 10.1016/S0921-5093(97)00604-7. DOI
Zamanzade M., Barnoush A. An Overview of the Hydrogen Embrittlement of Iron Aluminides. Procedia Mater. Sci. 2014;3:2016–2023. doi: 10.1016/j.mspro.2014.06.325. DOI
Zamanzade M., Vehoff H., Barnoush A. Cr effect on hydrogen embrittlement of Fe3Al-based iron aluminide intermetallics: Surface or bulk effect. Acta Mater. 2014;69:210–223. doi: 10.1016/j.actamat.2014.01.042. DOI
Mubarak A.A. The elastic, electronic and magnetism structure of the MAl and M3Al (M = Fe and Ni) alloy with and without hydrogen atoms. J. Magn. Magn. Mater. 2016;401:816–822. doi: 10.1016/j.jmmm.2015.11.015. DOI
Kellou A., Raulot J., Grosdidier T. Structural and thermal properties of Fe3Al, Fe3AlC and hypothetical Fe3AlX (X = H, B, N, O) compounds: Ab initio and quasi-harmonic Debye modelling. Intermetallics. 2010;18:1293–1296. doi: 10.1016/j.intermet.2010.02.013. DOI
Rao V.S. Fe3Al-Fe3AlC intermetallics for high temperature applications: An assessment. J. Mater. Sci. 2004;39:4193–4198. doi: 10.1023/B:JMSC.0000033399.47370.4f. DOI
Prakash U., Parvathavarthini N., Dayal R. Effect of composition on hydrogen permeation in Fe–Al alloys. Intermetallics. 2007;15:17–19. doi: 10.1016/j.intermet.2006.02.002. DOI
Deng Y., Rogne B.R.S., Barnoush A. In-situ microscale examination of hydrogen effect on fracture toughness: A case study on B2 and D03 ordered iron aluminides intermetallic alloys. Eng. Fract. Mech. 2019;217:106551. doi: 10.1016/j.engfracmech.2019.106551. DOI
Barnoush A., Dake J., Kheradmand N., Vehoff H. Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques. Intermetallics. 2010;18:1385–1389. doi: 10.1016/j.intermet.2010.01.001. DOI
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Všianská M., Friák M., Šob M. An ab initio study of Fe3Al: A critical review of generalized gradient approximation. (to be published)
Methfessel M., Paxton A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 1989;40:3616–3621. doi: 10.1103/PhysRevB.40.3616. PubMed DOI
Priyadarshi A., Balasubramaniam R. On critical hydrogen concentration for hydrogen embrittlement of Fe3Al. Bull. Mater. Sci. 2001;24:559–562. doi: 10.1007/BF02706731. DOI
Černý M., Šesták P., Řehák P., Všianská M., Šob M. Atomistic approaches to cleavage of interfaces. Modell. Simul. Mater. Sci. Eng. 2019;27:035007. doi: 10.1088/1361-651X/ab0293. DOI
Batyrev I., Alavi A., Finnis M. Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure. Phys. Rev. B Condens. Matter Mater. Phys. 2000;62:4698–4706. doi: 10.1103/PhysRevB.62.4698. DOI
Guo H., Qi Y., Li X. Adhesion at diamond/metal interfaces: A density functional theory study. J. Appl. Phys. 2010;107:033722. doi: 10.1063/1.3277013. DOI
Janisch R., Ahmed N., Hartmaier A. Ab initio tensile tests of Al bulk crystals and grain boundaries: Universality of mechanical behavior. Phys. Rev. B. 2010;81:184108. doi: 10.1103/PhysRevB.81.184108. DOI
Zhao D., Løvvik O.M., Marthinsen K., Li Y. Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Mater. 2018;145:235–246. doi: 10.1016/j.actamat.2017.12.023. DOI
Zhang Y., Lu G.H., Deng S., Wang T., Xu H., Kohyama M., Yamamoto R. Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test. Phys. Rev. B. 2007;75:174101. doi: 10.1103/PhysRevB.75.174101. DOI
Zhang Y., Lu G.H., Hu X., Wang T., Kohyama M., Yamamoto R. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J. Phys. Condens. Matter. 2007;19:456225. doi: 10.1088/0953-8984/19/45/456225. DOI
Elsner B.A.M., Müller S. Size effects and strain localization in atomic-scale cleavage modeling. J. Phys. Condens. Matter. 2015;27:345002. doi: 10.1088/0953-8984/27/34/345002. PubMed DOI
Tahir A., Janisch R., Hartmaier A. Hydrogen embrittlement of a carbon segregated Σ5(310)[001] symmetrical tilt grain boundary in α-Fe. Mater. Sci. Eng. A. 2014;612:462–467. doi: 10.1016/j.msea.2014.06.071. DOI
Khalid M.Z., Friis J., Ninive P.H., Marthinsen K., Strandlie A. Ab-initio study of atomic structure and mechanical behaviour of Al/Fe intermetallic interfaces. Comput. Mater. Sci. 2020;174:109481. doi: 10.1016/j.commatsci.2019.109481. DOI
Černý M., Šesták P., Řehák P., Všianská M., Šob M. Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater. Sci. Eng. A. 2016;669:218–225. doi: 10.1016/j.msea.2016.05.083. DOI
Lazar P., Podloucky R. Cleavage fracture of a crystal: Density functional theory calculations based on a model which includes structural relaxations. Phys. Rev. B. 2008;78:104114. doi: 10.1103/PhysRevB.78.104114. DOI
Geng W.T., Freeman A.J., Wu R., Olson G.B. Effect of Mo and Pd on the grain-boundary cohesion of Fe. Phys. Rev. B. 2000;62:6208. doi: 10.1103/PhysRevB.62.6208. DOI
Fu C., Painter G. First principles investigation of hydrogen embrittlement in FeAl. J. Mater. Res. 1991;6:719–723. doi: 10.1557/JMR.1991.0719. DOI
Jiang D.E., Carter E.A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys. Rev. B. 2004;70:064102. doi: 10.1103/PhysRevB.70.064102. DOI
Johnson D.F., Carter E.A. First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement. Acta Mater. 2010;58:638–648. doi: 10.1016/j.actamat.2009.09.042. DOI