• This record comes from PubMed

The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study

. 2021 Jul 26 ; 14 (15) : . [epub] 20210726

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-08130S Grantová Agentura České Republiky
e-INFRA CZ (ID:90140) Ministerstvo Školství, Mládeže a Tělovýchovy
e-INFRA LM2018140 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015085 Ministerstvo Školství, Mládeže a Tělovýchovy

We performed a quantum-mechanical molecular-dynamics (MD) study of Fe3Al with and without hydrogen atoms under conditions of uniaxial deformation up to the point of fracture. Addressing a long-lasting problem of hydrogen-induced brittleness of iron-aluminides under ambient conditions, we performed our density-functional-theory (DFT) MD simulations for T = 300 K (room temperature). Our MD calculations include a series of H concentrations ranging from 0.23 to 4 at.% of H and show a clear preference of H atoms for tetrahedral-like interstitial positions within the D03 lattice of Fe3Al. In order to shed more light on these findings, we performed a series of static lattice-simulations with the H atoms located in different interstitial sites. The H atoms in two different types of octahedral sites (coordinated by either one Al and five Fe atoms or two Al and four Fe atoms) represent energy maxima. Our structural relaxation of the H atoms in the octahedral sites lead to minimization of the energy when the H atom moved away from this interstitial site into a tetrahedral-like position with four nearest neighbors representing an energy minimum. Our ab initio MD simulations of uniaxial deformation along the ⟨001⟩ crystallographic direction up to the point of fracture reveal that the hydrogen atoms are located at the newly-formed surfaces of fracture planes even for the lowest computed H concentrations. The maximum strain associated with the fracture is then lower than that of H-free Fe3Al. We thus show that the hydrogen-related fracture initiation in Fe3Al in the case of an elastic type of deformation as an intrinsic property which is active even if all other plasticity mechanism are absent. The newly created fracture surfaces are partly non-planar (not atomically flat) due to thermal motion and, in particular, the H atoms creating locally different environments.

See more in PubMed

Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.

Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI

Xu Z., McLellan R. The solubility of hydrogen in Fe3Al-intermetallics. J. Phys. Chem. Solids. 1997;58:2127–2129. doi: 10.1016/S0022-3697(97)00155-8. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Cheng X., Wan X. Hydrogen Diffusivity in a Fe3Al-Based Alloy. Scr. Mater. 1998;38:1505–1509. doi: 10.1016/S1359-6462(98)00075-X. DOI

Gu B., Chu W.Y., Qiao L.J. TEM observation on stress corrosion cracking of Fe3Al alloy in acetone and water. J. Mater. Sci. Lett. 1999;18:1291–1293. doi: 10.1023/A:1006650503369. DOI

Chen G., Liu C. Moisture induced environmental embrittlement of intermetallics. Int. Mater. Rev. 2001;46:253–270. doi: 10.1179/095066001771048718. DOI

Kattner U., Burton B. In: Al-Fe (Aluminium-Iron). Phase Diagrams of Binary Iron Alloys. Okamoto H., editor. ASM International; Materials Park, OH, USA: 1993. pp. 12–28.

Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI

Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI

Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI

Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D03 ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI

Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI

Castagna A., Stoloff N. Hydrogen embrittlement of Fe3Al alloys. Mater. Sci. Eng. A. 1995;192–193:399–406. doi: 10.1016/0921-5093(94)03240-8. DOI

Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI

Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI

Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kov. Mater. Met. Mater. 2018;56:205. doi: 10.4149/km_2018_4_205. DOI

Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI

Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI

Grigorchik A.N., Astrashab V.E., Kukareko V.A., Belotserkovsky M.A., Sosnovsky V.A. High-temperature heat treatment of hypersonic metallization coatings from pseudoalloy “Fe-Al”. Lett. Mater. 2021;11:198–203. doi: 10.22226/2410-3535-2021-2-198-203. DOI

Deevi S.C. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog. Mater. Sci. 2021;118:100769. doi: 10.1016/j.pmatsci.2020.100769. DOI

Tolochyn O.I., Baglyuk G.A., Tolochyna O.V., Evych Y.I., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Mater. Sci. 2021;56:499–508. doi: 10.1007/s11003-021-00456-y. DOI

Komarov O.N., Zhilin S.G., Predein V.V., Popov A.V. Mechanisms for Forming Iron-Containing Intermetallics Prepared by Aluminothermy and the Effect of Special Treatment Methods on their Properties. Metallurgist. 2020;64:810–821. doi: 10.1007/s11015-020-01058-w. DOI

Vodičková V., Švec M., Hanus P., Novák P., Záděra A., Keller V., Prokopčaková P.P. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides. Molecules. 2020;25:4268. doi: 10.3390/molecules25184268. PubMed DOI PMC

Luo X., Cao J., Meng G., Chuan Y., Yao Z., Xie H. Systematical investigation on the microstructures and tribological properties of Fe-Al laser cladding coatings. Appl. Surf. Sci. 2020;516:146121. doi: 10.1016/j.apsusc.2020.146121. DOI

Luo X., Cao J., Meng G., Yu F., Jiang Q., Zhang P., Xie H. Double Glow Plasma Surface Metallurgy Technology Fabricated Fe-Al-Cr Coatings with Excellent Corrosion Resistance. Coatings. 2020;10:575. doi: 10.3390/coatings10060575. DOI

Teker T., Yilmaz S.O. Synthesis and structural characterization of Fe based Ti+Ni3Al+Al2O3 reinforcement composite produced by mechanical alloying. Rev. Metal. 2020;56:e178. doi: 10.3989/revmetalm.178. DOI

Zhang X., Sun Y., Niu M., Shao M., Geng X. Microstructure and mechanical behavior of in situ TiC reinforced Fe3Al (Fe-23Al-3Cr) matrix composites by mechanical alloying and vacuum hot-pressing sintering technology. Vacuum. 2020;180:109544. doi: 10.1016/j.vacuum.2020.109544. DOI

Ghazanfari H., Blais C., Gariepy M., Savoie S., Schulz R., Alamdari H. Improving wear resistance of metal matrix composites using reinforcing particles in two length-scales: Fe3Al/TiC composites. Surf. Coat. Technol. 2020;386:125502. doi: 10.1016/j.surfcoat.2020.125502. DOI

Khodaei M. Characterization of Al2O3 in Fe3Al-30 vol.% Al2O3 Nanocomposite Powder Synthesized by Mechanochemical Process. J. Nanostruct. 2020;10:456–462. doi: 10.22052/JNS.2020.03.003. DOI

Altunin R.R., Moiseenko E.T., Zharkov S.M. Structural Phase Transformations during a Solid-State Reaction in a Bilayer Al/Fe Thin-Film Nanosystem. Phys. Solid State. 2020;62:200–205. doi: 10.1134/S1063783420010059. DOI

Tolochyn O.I., Tolochyna O.V., Bagliuk H.A., Yevych Y.I., Podrezov Y.M., Mamonova A.A. Influence of Sintering Temperature on the Structure and Properties of Powder Iron Aluminide Fe3Al. Powder Metall. Met. Ceram. 2020;59:150–159. doi: 10.1007/s11106-020-00150-9. DOI

Adler L., Fu Z., Koerner C. Electron beam based additive manufacturing of Fe3Al based iron aluminides—Processing window, microstructure and properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020;785:139369. doi: 10.1016/j.msea.2020.139369. DOI

Michalcova A., Ozkan M., Mikula P., Marek I., Knaislova A., Kopecek J., Vojtech D. The Influence of Powder Milling on Properties of SPS Compacted FeAl. Molecules. 2020;25:2263. doi: 10.3390/molecules25092263. PubMed DOI PMC

Peska M., Karczewski K., Rzeszotarska M., Polanski M. Direct Synthesis of Fe-Al Alloys from Elemental Powders Using Laser Engineered Net Shaping. Materials. 2020;13:531. doi: 10.3390/ma13030531. PubMed DOI PMC

Luo X., Cao J., Meng G., Zhou Y., Xie H. Long-range-ordered Fe3Al with excellent electromagnetic wave absorption. J. Mater. Sci. Mater. Electron. 2020;31:15608–15615. doi: 10.1007/s10854-020-04124-w. DOI

Ismail A., Bahanan W., Bin Hussain P., Saat A.M., Shaik N.B. Diffusion Bonding of Al-Fe Enhanced by Gallium. Processes. 2020;8:824. doi: 10.3390/pr8070824. DOI

Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI

Gonzales-Ormeno P., Petrilli H., Schön C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573–582. doi: 10.1016/S0364-5916(02)80009-8. DOI

Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI

Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI

Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI

Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI

Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC

Ju J., Kang M., Zhou Y., Yang C., Wang K., Li J., Wang R., Fu H., Wang J. First-principles investigations of the stability, electronic structures, mechanical properties and thermodynamic properties of FexAlyCz compounds in Fe-Cr-B-Al-C alloy. J. Phys. Chem. Solids. 2020;143 doi: 10.1016/j.jpcs.2020.109366. DOI

Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC

Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC

Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI

Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI

Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI

Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI

Friák M., Všianská M., Šob M. A Quantum–Mechanical Study of Clean and Cr—Segregated Antiphase Boundaries in Fe3Al. Materials. 2019;12:3954. doi: 10.3390/ma12233954. PubMed DOI PMC

Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI

Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI

Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.

Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Phys. B Condens. Matter. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI

Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC

Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI

Friák M., Černý M., Všianská M., Šob M. Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al. Materials. 2020;13:4884. doi: 10.3390/ma13214884. PubMed DOI PMC

Li Y., Liu Y., Yang J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint. Opt. Laser Technol. 2020;122:105875. doi: 10.1016/j.optlastec.2019.105875. DOI

Friák M., Černý M., Šob M. The impact of vibrational entropy on the segregation of Cu to antiphase boundaries in Fe3Al. Magnetochemistry. 2021;7 submitted for publication.

Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI

Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI

Lin J., Chu W., Hsiao C. Hydrogen induced cracking in Fe3Al + Cr. Scr. Metall. Mater. 1994;30:583–586. doi: 10.1016/0956-716X(94)90433-2. DOI

Tu J., Meng L., Liu M. Evaluation of Hydrogen Embrittlement Characteristics of Fe3Al Intermetallic Compounds. Scr. Mater. 1998;38:833–838. doi: 10.1016/S1359-6462(97)00534-4. DOI

Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI

Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI

Balasubramaniam R. Hydrogen in iron aluminides. J. Alloy. Compd. 2002;330–332:506–510. doi: 10.1016/S0925-8388(01)01630-9. DOI

Alven D., Stoloff N. The influence of composition on the environmental embrittlement of Fe3Al alloys. Mater. Sci. Eng. A. 1997;239–240:362–368. doi: 10.1016/S0921-5093(97)00604-7. DOI

Zamanzade M., Barnoush A. An Overview of the Hydrogen Embrittlement of Iron Aluminides. Procedia Mater. Sci. 2014;3:2016–2023. doi: 10.1016/j.mspro.2014.06.325. DOI

Zamanzade M., Vehoff H., Barnoush A. Cr effect on hydrogen embrittlement of Fe3Al-based iron aluminide intermetallics: Surface or bulk effect. Acta Mater. 2014;69:210–223. doi: 10.1016/j.actamat.2014.01.042. DOI

Mubarak A.A. The elastic, electronic and magnetism structure of the MAl and M3Al (M = Fe and Ni) alloy with and without hydrogen atoms. J. Magn. Magn. Mater. 2016;401:816–822. doi: 10.1016/j.jmmm.2015.11.015. DOI

Kellou A., Raulot J., Grosdidier T. Structural and thermal properties of Fe3Al, Fe3AlC and hypothetical Fe3AlX (X = H, B, N, O) compounds: Ab initio and quasi-harmonic Debye modelling. Intermetallics. 2010;18:1293–1296. doi: 10.1016/j.intermet.2010.02.013. DOI

Rao V.S. Fe3Al-Fe3AlC intermetallics for high temperature applications: An assessment. J. Mater. Sci. 2004;39:4193–4198. doi: 10.1023/B:JMSC.0000033399.47370.4f. DOI

Prakash U., Parvathavarthini N., Dayal R. Effect of composition on hydrogen permeation in Fe–Al alloys. Intermetallics. 2007;15:17–19. doi: 10.1016/j.intermet.2006.02.002. DOI

Deng Y., Rogne B.R.S., Barnoush A. In-situ microscale examination of hydrogen effect on fracture toughness: A case study on B2 and D03 ordered iron aluminides intermetallic alloys. Eng. Fract. Mech. 2019;217:106551. doi: 10.1016/j.engfracmech.2019.106551. DOI

Barnoush A., Dake J., Kheradmand N., Vehoff H. Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques. Intermetallics. 2010;18:1385–1389. doi: 10.1016/j.intermet.2010.01.001. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Všianská M., Friák M., Šob M. An ab initio study of Fe3Al: A critical review of generalized gradient approximation. (to be published)

Methfessel M., Paxton A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 1989;40:3616–3621. doi: 10.1103/PhysRevB.40.3616. PubMed DOI

Priyadarshi A., Balasubramaniam R. On critical hydrogen concentration for hydrogen embrittlement of Fe3Al. Bull. Mater. Sci. 2001;24:559–562. doi: 10.1007/BF02706731. DOI

Černý M., Šesták P., Řehák P., Všianská M., Šob M. Atomistic approaches to cleavage of interfaces. Modell. Simul. Mater. Sci. Eng. 2019;27:035007. doi: 10.1088/1361-651X/ab0293. DOI

Batyrev I., Alavi A., Finnis M. Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure. Phys. Rev. B Condens. Matter Mater. Phys. 2000;62:4698–4706. doi: 10.1103/PhysRevB.62.4698. DOI

Guo H., Qi Y., Li X. Adhesion at diamond/metal interfaces: A density functional theory study. J. Appl. Phys. 2010;107:033722. doi: 10.1063/1.3277013. DOI

Janisch R., Ahmed N., Hartmaier A. Ab initio tensile tests of Al bulk crystals and grain boundaries: Universality of mechanical behavior. Phys. Rev. B. 2010;81:184108. doi: 10.1103/PhysRevB.81.184108. DOI

Zhao D., Løvvik O.M., Marthinsen K., Li Y. Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Mater. 2018;145:235–246. doi: 10.1016/j.actamat.2017.12.023. DOI

Zhang Y., Lu G.H., Deng S., Wang T., Xu H., Kohyama M., Yamamoto R. Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test. Phys. Rev. B. 2007;75:174101. doi: 10.1103/PhysRevB.75.174101. DOI

Zhang Y., Lu G.H., Hu X., Wang T., Kohyama M., Yamamoto R. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J. Phys. Condens. Matter. 2007;19:456225. doi: 10.1088/0953-8984/19/45/456225. DOI

Elsner B.A.M., Müller S. Size effects and strain localization in atomic-scale cleavage modeling. J. Phys. Condens. Matter. 2015;27:345002. doi: 10.1088/0953-8984/27/34/345002. PubMed DOI

Tahir A., Janisch R., Hartmaier A. Hydrogen embrittlement of a carbon segregated Σ5(310)[001] symmetrical tilt grain boundary in α-Fe. Mater. Sci. Eng. A. 2014;612:462–467. doi: 10.1016/j.msea.2014.06.071. DOI

Khalid M.Z., Friis J., Ninive P.H., Marthinsen K., Strandlie A. Ab-initio study of atomic structure and mechanical behaviour of Al/Fe intermetallic interfaces. Comput. Mater. Sci. 2020;174:109481. doi: 10.1016/j.commatsci.2019.109481. DOI

Černý M., Šesták P., Řehák P., Všianská M., Šob M. Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater. Sci. Eng. A. 2016;669:218–225. doi: 10.1016/j.msea.2016.05.083. DOI

Lazar P., Podloucky R. Cleavage fracture of a crystal: Density functional theory calculations based on a model which includes structural relaxations. Phys. Rev. B. 2008;78:104114. doi: 10.1103/PhysRevB.78.104114. DOI

Geng W.T., Freeman A.J., Wu R., Olson G.B. Effect of Mo and Pd on the grain-boundary cohesion of Fe. Phys. Rev. B. 2000;62:6208. doi: 10.1103/PhysRevB.62.6208. DOI

Fu C., Painter G. First principles investigation of hydrogen embrittlement in FeAl. J. Mater. Res. 1991;6:719–723. doi: 10.1557/JMR.1991.0719. DOI

Jiang D.E., Carter E.A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys. Rev. B. 2004;70:064102. doi: 10.1103/PhysRevB.70.064102. DOI

Johnson D.F., Carter E.A. First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement. Acta Mater. 2010;58:638–648. doi: 10.1016/j.actamat.2009.09.042. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...