• This record comes from PubMed

Mono-6-Substituted Cyclodextrins-Synthesis and Applications

. 2021 Aug 21 ; 26 (16) : . [epub] 20210821

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 34443653
PubMed Central PMC8400779
DOI 10.3390/molecules26165065
PII: molecules26165065
Knihovny.cz E-resources

Cyclodextrins are well known supramolecular hosts used in a wide range of applications. Monosubstitution of native cyclodextrins in the position C-6 of a glucose unit represents the simplest method how to achieve covalent binding of a well-defined host unit into the more complicated systems. These derivatives are relatively easy to prepare; that is why the number of publications describing their preparations exceeds 1400, and the reported synthetic methods are often very similar. Nevertheless, it might be very demanding to decide which of the published methods is the best one for the intended purpose. In the review, we aim to present only the most useful and well-described methods for preparing different types of mono-6-substituted derivatives. We also discuss the common problems encountered during their syntheses and suggest their optimal solutions.

See more in PubMed

Crini G. Review: A History of Cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI

Morin-Crini N., Fourmentin S., Fenyvesi É., Lichtfouse E., Torri G., Fourmentin M., Crini G. 130 Years of Cyclodextrin Discovery for Health, Food, Agriculture, and the Industry: A Review. Environ. Chem. Lett. 2021;19:2581–2617. doi: 10.1007/s10311-020-01156-w. DOI

Del Valle E.M.M. Cyclodextrins and Their Uses: A Review. Process. Biochem. 2004;39:1033–1046. doi: 10.1016/S0032-9592(03)00258-9. DOI

Challa R., Ahuja A., Ali J., Khar R.K. Cyclodextrins in Drug Delivery: An Updated Review. AAPS PharmSciTech. 2005;6:E329–E357. doi: 10.1208/pt060243. PubMed DOI PMC

Brewster M.E., Loftsson T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Delivery Rev. 2007;59:645–666. doi: 10.1016/j.addr.2007.05.012. PubMed DOI

Bilensoy E., editor. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011.

Astray G., Gonzalez-Barreiro C., Mejuto J.C., Rial-Otero R., Simal-Gándara J. A Review on the Use of Cyclodextrins in Foods. Food Hydrocoll. 2009;23:1631–1640. doi: 10.1016/j.foodhyd.2009.01.001. DOI

Connors K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997;97:1325–1358. doi: 10.1021/cr960371r. PubMed DOI

Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998;98:1875–1918. doi: 10.1021/cr970015o. PubMed DOI

Schneider H.-J., Hacket F., Rüdiger V., Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998;98:1755–1786. doi: 10.1021/cr970019t. PubMed DOI

Loftsson T., Brewster M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996;85:1017–1025. doi: 10.1021/js950534b. PubMed DOI

Marques H.M.C. A Review on Cyclodextrin Encapsulation of Essential Oils and Volatiles. Flavour Fragr. J. 2010;25:313–326. doi: 10.1002/ffj.2019. DOI

Uekama K. Pharmaceutical Applications of Methylated Cyclodextrins. Pharm. Int. 1985;6:61–65.

Gould S., Scott R.C. 2-Hydroxypropyl-β-Cyclodextrin (HP-β-CD): A Toxicology Review. Food Chem. Toxicol. 2005;43:1451–1459. doi: 10.1016/j.fct.2005.03.007. PubMed DOI

Fillet M., Hubert P., Crommen J. Method Development Strategies for the Enantioseparation of Drugs by Capillary Electrophoresis Using Cyclodextrins as Chiral Additives. Electrophoresis. 1998;19:2834–2840. doi: 10.1002/elps.1150191608. PubMed DOI

Luke D.R., Tomaszewski K., Damle B., Schlamm H.T. Review of the Basic and Clinical Pharmacology of Sulfobutylether-β-Cyclodextrin (SBECD) J. Pharm. Sci. 2010;99:3291–3301. doi: 10.1002/jps.22109. PubMed DOI

Evans C.E., Stalcup A.M. Comprehensive Strategy for Chiral Separations Using Sulfated Cyclodextrins in Capillary Electrophoresis. Chirality. 2003;15:709–723. doi: 10.1002/chir.10285. PubMed DOI

Řezanka M. Monosubstituted Cyclodextrins as Precursors for Further Use. Eur. J. Org. Chem. 2016;2016:5322–5334. doi: 10.1002/ejoc.201600693. PubMed DOI

Řezanka M. Synthesis of Substituted Cyclodextrins. Environ. Chem. Lett. 2019;17:49–63. doi: 10.1007/s10311-018-0779-7. DOI

Welcome to Python.Org. [(accessed on 15 July 2021)]; Available online: https://www.python.org/

Hügel S. Pyzotero: Python Wrapper for the Zotero API. [(accessed on 15 July 2021)]; Available online: https://github.com/urschrei/pyzotero.

Zotero | Your Personal Research Assistant. [(accessed on 15 July 2021)]; Available online: https://www.zotero.org/

Xiao S., Wang Q., Si L., Zhou X., Zhang Y., Zhang L., Zhou D. Synthesis and Biological Evaluation of Novel Pentacyclic Triterpene α -Cyclodextrin Conjugates as HCV Entry Inhibitors. Eur. J. Med. Chem. 2016;124:1–9. doi: 10.1016/j.ejmech.2016.08.020. PubMed DOI

Melton L.D., Slessor K.N. Synthesis of Monosubstituted Cyclohexaamyloses. Carbohydr. Res. 1971;18:29–37. doi: 10.1016/S0008-6215(00)80256-6. DOI

Brown S., Coates J., Coghlan D., Easton C., Vaneyk S., Janowski W., Lepore A., Lincoln S., Luo Y., May B., et al. Synthesis and Properties of 6A-Amino-6A-Deoxy-α and β-Cyclodextrin. Aust. J. Chem. 1993;46:953–958. doi: 10.1071/CH9930953. DOI

Tang W., Ng S.-C. Facile Synthesis of Mono-6-Amino-6-Deoxy-α-, β-, γ-Cyclodextrin Hydrochlorides for Molecular Recognition, Chiral Separation and Drug Delivery. Nat. Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI

Chwalek M., Auzély R., Fort S. Synthesis and Biological Evaluation of Multivalent Carbohydrate Ligands Obtained by Click Assembly of Pseudo-Rotaxanes. Org. Biomol. Chem. 2009;7:1680–1688. doi: 10.1039/b822976g. PubMed DOI

Iijima K., Aoki D., Sogawa H., Asai S., Takata T. Synthesis and Characterization of Supramolecular Cross-Linkers Containing Cyclodextrin Dimer and Trimer. Polym. Chem. 2016;7:3492–3495. doi: 10.1039/C6PY00367B. DOI

Wang M., Zhang X., Li L., Wang J., Wang J., Ma J., Yuan Z., Lincoln S.F., Guo X. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(Acrylic Acid)s: Effect of Substitution Degree, Concentration, and Tethered Chain Length. Macromol. Mater. Eng. 2016;301:191–198. doi: 10.1002/mame.201500295. DOI

Fujita K., Nagamura S., Imoto T., Tahara T., Koga T. Regiospecific Sulfonation of Secondary Hydroxyl Groups of α-Cyclodextrin. Its Application to Preparation of 2A2B, 2A2C-, and 2A2D-Disulfonates. J. Am. Chem. Soc. 1985;107:3233–3235. doi: 10.1021/ja00297a032. DOI

Fujita K., Yamamura H., Matsunaga A., Imoto T., Mihashi K., Fujioka T. 6-Polysubstituted α-Cyclodextrins. Application of Korner’s Absolute Method of Isomer Determination. J. Am. Chem. Soc. 1986;108:4509–4513. doi: 10.1021/ja00275a042. DOI

Lo W., Scott T.A., Zhang P., Ling C.-C., Holm R.H. Stabilities of Cubane Type [Fe4S4(SR)4]2− Clusters in Partially Aqueous Media. J. Inorg. Biochem. 2011;105:497–508. doi: 10.1016/j.jinorgbio.2010.12.009. PubMed DOI PMC

Petter R.C., Salek J.S., Sikorski C.T., Kumaravel G., Lin F.T. Cooperative Binding by Aggregated Mono-6-(Alkylamino)-β-Cyclodextrins. J. Am. Chem. Soc. 1990;112:3860–3868. doi: 10.1021/ja00166a021. DOI

Vizitiu D., Walkinshaw C.S., Gorin B.I., Thatcher G.R.J. Synthesis of Monofacially Functionalized Cyclodextrins Bearing Amino Pendent Groups. J. Org. Chem. 1997;62:8760–8766. doi: 10.1021/jo9711549. DOI

Jicsinszky L., Iványi R. Catalytic Transfer Hydrogenation of Sugar Derivatives. Carbohydr. Polym. 2001;45:139–145. doi: 10.1016/S0144-8617(00)00319-2. DOI

Hacket F., Simova S., Schneider H.-J. The Complexation of Peptides by Aminocyclodextrins. J. Phys. Org. Chem. 2001;14:159–170. doi: 10.1002/poc.348. DOI

McNaughton M., Engman L., Birmingham A., Powis G., Cotgreave I.A. Cyclodextrin-Derived Diorganyl Tellurides as Glutathione Peroxidase Mimics and Inhibitors of Thioredoxin Reductase and Cancer Cell Growth. J. Med. Chem. 2004;47:233–239. doi: 10.1021/jm030916r. PubMed DOI

Tripodo G., Wischke C., Neffe A.T., Lendlein A. Efficient Synthesis of Pure Monotosylated Beta-Cyclodextrin and Its Dimers. Carbohydr. Res. 2013;381:59–63. doi: 10.1016/j.carres.2013.08.018. PubMed DOI

Novokshonov V.V., Xuan N.T.T., Shaglaeva N.S. Synthesis of 6I-O-(4-Methylbenzenesulfonyl)-β-Cyclodextrin. Russ. J. Org. Chem. 2019;55:1616–1617. doi: 10.1134/S1070428019100245. DOI

Defaye J., Gadelle A., Guiller A., Darcy R., O’Sullivan T. Branched Thiocyclomalto-Oligosaccharides: Synthesis and Properties of 6-S-α- and 6-S-β-d-Glucopyranosyl-6-Thiocyclomaltoheptaose. Carbohydr. Res. 1989;192:251–258. doi: 10.1016/0008-6215(89)85184-5. DOI

Ekberg B., Andersson L.I., Mosbach K. The Synthesis of an Active Derivative of Cyclomalto-Heptaose for the Hydrolysis of Esters and the Formation of Amide Bonds. Carbohydr. Res. 1989;192:111–117. doi: 10.1016/0008-6215(89)85171-7. PubMed DOI

Sforza S., Galaverna G., Corradini R., Dossena A., Marchelli R. ESI-Mass Spectrometry Analysis of Unsubstituted and Disubstituted β-Cyclodextrins: Fragmentation Mode and Identification of the AB, AC, AD Regioisomers. J. Am. Soc. Mass Spectrom. 2003;14:124–135. doi: 10.1016/S1044-0305(02)00853-X. PubMed DOI

Byun H.-S., Zhong N., Bittman R. 6A-O-p-Toluenesulfonyl-β-Cyclodextrin. Org. Synth. 2000;77:225–230. doi: 10.15227/orgsyn.077.0225. DOI

Trotta F., Martina K., Robaldo B., Barge A., Cravotto G. Recent Advances in the Synthesis of Cyclodextrin Derivatives under Microwaves and Power Ultrasound. J. Inclusion Phenom. Macrocyclic Chem. 2007;57:3–7. doi: 10.1007/s10847-006-9169-z. DOI

Zhong N., Byun H.-S., Bittman R. An Improved Synthesis of 6-O-Monotosyl-6-Deoxy-β-Cyclodextrin. Tetrahedron Lett. 1998;39:2919–2920. doi: 10.1016/S0040-4039(98)00417-1. DOI

Brady B., Lynam N., O’Sullivan T., Ahern C., Darcy R. 6A-O-p-Toluenesulfonyl-β-Cyclodextrin. Org. Synth. 2000;77:220–224. doi: 10.15227/orgsyn.077.0220. DOI

Xu M., Wu S., Zeng F., Yu C. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing. Langmuir. 2010;26:4529–4534. doi: 10.1021/la9033244. PubMed DOI

Law H., Benito J.M., García Fernández J.M., Jicsinszky L., Crouzy S., Defaye J. Copper(II)-Complex Directed Regioselective Mono-p-Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-Aided Design. J. Phys. Chem. B. 2011;115:7524–7532. doi: 10.1021/jp2035345. PubMed DOI

Wang D., Xie D., Shi W., Sun S., Zhao C. Designing a Photoresponsive Molecularly Imprinted System on a Silicon Wafer Substrate Surface. Langmuir. 2013;29:8311–8319. doi: 10.1021/la401201w. PubMed DOI

Aquino A.M., Abelt C.J., Berger K.L., Darragh C.M., Kelley S.E., Cossette M.V. Synthesis and Photochemistry of Some Anthraquinone-Substituted Beta.-Cyclodextrins. J. Am. Chem. Soc. 1990;112:5819–5824. doi: 10.1021/ja00171a022. DOI

Fujita K., Tahara T., Imoto T., Koga T. Enzymatic Preparation of Specifically Modified Linear Maltooligosaccharides through Taka-Amylase A-Catalyzed Hydrolysis of 6-O-Arenesulfonyl-γ-Cyclodextrins. Chem. Lett. 1988;17:1329–1332. doi: 10.1246/cl.1988.1329. DOI

Van Guyse J.F.R., de la Rosa V.R., Hoogenboom R. Mechanochemical Preparation of Stable Sub-100 Nm γ-Cyclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization. Chem. Eur. J. 2018;24:2758–2766. doi: 10.1002/chem.201705647. PubMed DOI

Pham D.-T., Ngo H.T., Lincoln S.F., May B.L., Easton C.J. Synthesis of C6A-to-C6A and C3A-to-C3A Diamide Linked γ-Cyclodextrin Dimers. Tetrahedron. 2010;66:2895–2898. doi: 10.1016/j.tet.2010.02.005. DOI

Palin R., Grove S.J.A., Prosser A.B., Zhang M.-Q. Mono-6-(O-2,4,6-Triisopropylbenzenesulfonyl)-γ-Cyclodextrin, a Novel Intermediate for the Synthesis of Mono-Functionalised γ-Cyclodextrins. Tetrahedron Lett. 2001;42:8897–8899. doi: 10.1016/S0040-4039(01)01934-7. DOI

Yang C., Nakamura A., Wada T., Inoue Y. Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by γ-Cyclodextrins with a Flexible or Rigid Cap. Org. Lett. 2006;8:3005–3008. doi: 10.1021/ol061004x. PubMed DOI

Popr M., Hybelbauerová S., Jindřich J. A Complete Series of 6-Deoxy-Monosubstituted Tetraalkylammonium Derivatives of α-, β-, and γ-Cyclodextrin with 1, 2, and 3 Permanent Positive Charges. Beilstein J. Org. Chem. 2014;10:1390–1396. doi: 10.3762/bjoc.10.142. PubMed DOI PMC

Fredy J.W., Scelle J., Guenet A., Morel E., Adam de Beaumais S., Ménand M., Marvaud V., Bonnet C.S., Tóth E., Sollogoub M., et al. Cyclodextrin Polyrotaxanes as a Highly Modular Platform for the Development of Imaging Agents. Chem. Eur. J. 2014;20:10915–10920. doi: 10.1002/chem.201403635. PubMed DOI

Kumprecht L., Buděšínský M., Vondrášek J., Vymětal J., Černý J., Císařová I., Brynda J., Herzig V., Koutník P., Závada J., et al. Rigid Duplex α-Cyclodextrin Reversibly Connected with Disulfide Bonds. Synthesis and Inclusion Complexes. J. Org. Chem. 2009;74:1082–1092. doi: 10.1021/jo802139s. PubMed DOI

Ye C., Zhao Y., Chang J., Liu W. Preparation and Chiral Discrimination of R-(-)-2-Phenylglycinol Modified β-Cyclodextrin. J. Chem. Res. 2001;2001:330–331. doi: 10.3184/030823401103169955. DOI

Ogoshi T., Takashima Y., Yamaguchi H., Harada A. Cyclodextrin-Grafted Poly(Phenylene Ethynylene) with Chemically-Responsive Properties. Chem. Commun. 2006;35:3702–3704. doi: 10.1039/b605804c. PubMed DOI

Rodríguez-Lavado J., de la Mata M., Jiménez-Blanco J.L., García-Moreno M.I., Benito J.M., Díaz-Quintana A., Sánchez-Alcázar J.A., Higaki K., Nanba E., Ohno K., et al. Targeted Delivery of Pharmacological Chaperones for Gaucher Disease to Macrophages by a Mannosylated Cyclodextrin Carrier. Org. Biomol. Chem. 2014;12:2289–2301. doi: 10.1039/C3OB42530D. PubMed DOI

Shipilov D.A., Kurochkina G.I., Levina I.I., Malenkovskaya M.A., Grachev M.K. Synthesis of Monocationic β-Cyclodextrin Derivatives. Russ. J. Org. Chem. 2017;53:290–295. doi: 10.1134/S1070428017020257. DOI

Rousseau C., Christensen B., Petersen T.E., Bols M. Cyclodextrins Containing an Acetone Bridge. Synthesis and Study as Epoxidation Catalysts. Org. Biomol. Cheml. 2004;2:3476–3482. doi: 10.1039/b410098k. PubMed DOI

Hauch Fenger T., Bjerre J., Bols M. Cyclodextrin Aldehydes Are Oxidase Mimics. ChemBioChem. 2009;10:2494–2503. doi: 10.1002/cbic.200900448. PubMed DOI

Yamanoi T., Yoshida N., Oda Y., Akaike E., Tsutsumida M., Kobayashi N., Osumi K., Yamamoto K., Fujita K., Takahashi K., et al. Synthesis of Mono-Glucose-Branched Cyclodextrins with a High Inclusion Ability for Doxorubicin and Their Efficient Glycosylation Using Mucor Hiemalis Endo-β-N-Acetylglucosaminidase. Bioorg. Med. Chem. Lett. 2005;15:1009–1013. doi: 10.1016/j.bmcl.2004.12.040. PubMed DOI

Zhou Y., Marinescu L., Pedersen C.M., Bols M. Synthesis of Tin-Containing Cyclodextrins as Potential Enzyme Models. Eur. J. Org. Chem. 2012;2012:6383–6389. doi: 10.1002/ejoc.201200756. DOI

Řezanka M., Eignerová B., Jindřich J., Kotora M. Synthesis of Mono(Perfluoroalkyl) Cyclodextrins via Cross Metathesis. Eur. J. Org. Chem. 2010;2010:6256–6262. doi: 10.1002/ejoc.201000807. DOI

Liu J., Liu R., Jiang J., Liu X. Design and Synthesis of Water-Soluble Photosensitive α-Cyclodextrin and Its Application in Dispersing Carbon Nanotubes. J. Appl. Polym. Sci. 2013;130:2588–2593. doi: 10.1002/app.39372. DOI

Tian S., Zhu H., Forgo P., D’Souza V.T. Selectively Monomodified Cyclodextrins. Synthetic Strategies. J. Org. Chem. 2000;65:2624–2630. doi: 10.1021/jo991347r. PubMed DOI

Lang K., Král V., Kapusta P., Kubát P., Vašek P. Photoinduced Electron Transfer within Porphyrin–Cyclodextrin Conjugates. Tetrahedron Lett. 2002;43:4919–4922. doi: 10.1016/S0040-4039(02)00954-1. DOI

Barata J.F.B., Zamarrón A., Neves M.G.P.M.S., Faustino M.A.F., Tomé A.C., Cavaleiro J.A.S., Röder B., Juarranz Á., Sanz-Rodríguez F. Photodynamic Effects Induced by Meso-Tris(Pentafluorophenyl)Corrole and Its Cyclodextrin Conjugates on Cytoskeletal Components of HeLa Cells. Eur. J. Med. Chem. 2015;92:135–144. doi: 10.1016/j.ejmech.2014.12.025. PubMed DOI

Jindřich J., Tišlerová I. Simple Preparation of 3I-O-Substituted β-Cyclodextrin Derivatives Using Cinnamyl Bromide. J. Org. Chem. 2005;70:9054–9055. doi: 10.1021/jo051339c. PubMed DOI

Liu Y., Yang Y.-W., Li L., Chen Y. Cooperative Molecular Recognition of Dyes by Dyad and Triad Cyclodextrin–Crown Ether Conjugates. Org. Biomol. Chem. 2004;2:1542–1548. doi: 10.1039/B402841D. PubMed DOI

Novokshonov V.V., Hoi N.C., Shaglaeva N.S. Selective Monoallylation of β-Cyclodextrin. Russ. J. Gen. Chem. 2017;87:1172–1174. doi: 10.1134/S1070363217060111. DOI

Bláhová M., Bednářová E., Řezanka M., Jindřich J. Complete Sets of Monosubstituted γ-Cyclodextrins as Precursors for Further Synthesis. J. Org. Chem. 2013;78:697–701. doi: 10.1021/jo301656p. PubMed DOI

Zhang Q.-W., Elemans J.A.A.W., White P.B., Nolte R.J.M. A Manganese Porphyrin–α-Cyclodextrin Conjugate as an Artificial Enzyme for the Catalytic Epoxidation of Polybutadiene. Chem. Commun. 2018;54:5586–5589. doi: 10.1039/C8CC02320D. PubMed DOI

Liu Y., Zhao Y.-L., Zhang H.-Y., Fan Z., Wen G.-D., Ding F. Spectrophotometric Study of Inclusion Complexation of Aliphatic Alcohols by β -Cyclodextrins with Azobenzene Tether. J. Phys. Chem. B. 2004;108:8836–8843. doi: 10.1021/jp0380024. DOI

Casas-Solvas J.M., Martos-Maldonado M.C., Vargas-Berenguel A. Synthesis of β-Cyclodextrin Derivatives Functionalized with Azobenzene. Tetrahedron. 2008;64:10919–10923. doi: 10.1016/j.tet.2008.08.098. DOI

Liu Y., Fan Z., Zhang H.-Y., Yang Y.-W., Ding F., Liu S.-X., Wu X., Wada T., Inoue Y. Supramolecular Self-Assemblies of β -Cyclodextrins with Aromatic Tethers: Factors Governing the Helical Columnar versus Linear Channel Superstructures. J. Org. Chem. 2003;68:8345–8352. doi: 10.1021/jo034632q. PubMed DOI

Puglisi A., Purrello R., Rizzarelli E., Sortino S., Vecchio G. Spectroscopic and Self-Association Behavior of a Porphyrin-β-Cyclodextrin Conjugate. New J. Chem. 2007;31:1499–1506. doi: 10.1039/b703680a. DOI

Fraix A., Gonçalves A.R., Cardile V., Graziano A.C.E., Theodossiou T.A., Yannakopoulou K., Sortino S. A Multifunctional Bichromophoric Nanoaggregate for Fluorescence Imaging and Simultaneous Photogeneration of RNOS and ROS. Chem. Asian J. 2013;8:2634–2641. doi: 10.1002/asia.201300463. PubMed DOI

Zhao Y., Yang Y.C., Shi H., Zhu H.Y., Huang R., Chi C.M., Zhao Y. Synthesis of Novel Bis(β-Cyclodextrin)s Linked with Glycol and Their Inclusion Complexation with Organic Dyes. Helv. Chim. Acta. 2010;93:1136–1148. doi: 10.1002/hlca.200900345. DOI

Park J.W., Song H.E., Lee S.Y. Homodimerization and Heteroassociation of 6-O-(2-Sulfonato-6-Naphthyl)-γ-Cyclodextrin and 6-Deoxy-(Pyrene-1-Carboxamido)-β-Cyclodextrin. J. Org. Chem. 2003;68:7071–7076. doi: 10.1021/jo034623h. PubMed DOI

Krois D., Brecker L., Werner A., Brinker U.H. Carbene Rearrangements, 60. Supramolecular Structure-Reactivity Relationships: Photolysis of a Series of Aziadamantane@Cyclodextrin Inclusion Complexes in the Solid State. Adv. Synth. Catal. 2004;346:1367–1374. doi: 10.1002/adsc.200404142. DOI

Liang G., Lam J.W.Y., Qin W., Li J., Xie N., Tang B.Z. Molecular Luminogens Based on Restriction of Intramolecular Motions through Host–Guest Inclusion for Cell Imaging. Chem. Commun. 2014;50:1725–1727. doi: 10.1039/C3CC48625G. PubMed DOI

Deng T., Wang J., Li Y., Han Z., Peng Y., Zhang J., Gao Z., Gu Y., Deng D. Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by Ingenious Self-Assembly Strategies for Tumor Theranostic. ACS Appl. Mater. Interfaces. 2018;10:27657–27668. doi: 10.1021/acsami.8b08512. PubMed DOI

Liu Y., Li B., You C.-C., Wada T., Inoue Y. Molecular Recognition Studies on Supramolecular Systems. 32. Molecular Recognition of Dyes by Organoselenium-Bridged Bis(β-Cyclodextrin)s. J. Org. Chem. 2001;66:225–232. doi: 10.1021/jo001372t. PubMed DOI

Wu S., Luo Y., Zeng F., Chen J., Chen Y., Tong Z. Photoreversible Fluorescence Modulation of a Rhodamine Dye by Supramolecular Complexation with Photosensitive Cyclodextrin. Angew. Chem. 2007;119:7145–7148. doi: 10.1002/ange.200701396. PubMed DOI

Guo Z., Feng Y., Zhu D., He S., Liu H., Shi X., Sun J., Qu M. Light-Switchable Single-Walled Carbon Nanotubes Based on Host-Guest Chemistry. Adv. Funct. Mater. 2013;23:5010–5018. doi: 10.1002/adfm.201300434. DOI

Michel D., Chitanda J.M., Balogh R., Yang P., Singh J., Das U., El-Aneed A., Dimmock J., Verrall R., Badea I. Design and Evaluation of Cyclodextrin-Based Delivery Systems to Incorporate Poorly Soluble Curcumin Analogs for the Treatment of Melanoma. Eur. J. Pharm. Biopharm. 2012;81:548–556. doi: 10.1016/j.ejpb.2012.03.016. PubMed DOI

Wang Q., Yang C., Fukuhara G., Mori T., Liu Y., Inoue Y. Supramolecular FRET Photocyclodimerization of Anthracenecarboxylate with Naphthalene-Capped γ-Cyclodextrin. Beilstein J. Org. Chem. 2011;7:290–297. doi: 10.3762/bjoc.7.38. PubMed DOI PMC

Yang C., Mori T., Origane Y., Ko Y.H., Selvapalam N., Kim K., Inoue Y. Highly Stereoselective Photocyclodimerization of α-Cyclodextrin-Appended Anthracene Mediated by γ-Cyclodextrin and Cucurbit[8]Uril: A Dramatic Steric Effect Operating Outside the Binding Site. J. Am. Chem. Soc. 2008;130:8574–8575. doi: 10.1021/ja8032923. PubMed DOI

Nakamura K., Seki T., Egawa Y., Miki R., Oda Y., Yamanoi T., Seki T. Sugar-Sensitive Supramolecular Structures Based on Phenylboronic Acid-Modified Cyclodextrins. Chem. Pharm. Bull. 2013;61:1188–1191. doi: 10.1248/cpb.c13-00542. PubMed DOI

Karpkird T., Wanichweacharungruang S. Synthesis and Photostability of Methoxycinnamic Acid Modified Cyclodextrins. J. Photochem. Photobiol. A. 2010;212:56–61. doi: 10.1016/j.jphotochem.2010.03.016. DOI

Edunov A.V., Kurochkina G.I., Grachev M.K., Levina I.I., Batalova T.A., Nifant’ev E.E. α-Cyclodextrin Compounds Containing Benzoic, Acetylsalicylic, and 2-(4-Isobutylphenyl)Propionic Acid Residues. Russ. J. Org. Chem. 2011;47:981–988. doi: 10.1134/S1070428011070037. DOI

Gao X.-M., Tong L.-H., Inoue Y., Tai A. Synthesis and Characterization of Novel Multifunctional Host Compounds. 4. Cyclodextrin Derivatives Bearing Chromophores. Synth. Commun. 1995;25:703–710. doi: 10.1080/00397919508011407. DOI

Liu Y., Chen Y., Li B., Wada T., Inoue Y. Cooperative Multipoint Recognition of Organic Dyes by Bis(-Cyclodextrin)s with 2,2′-Bipyridine-4,4′-Dicarboxy Tethers. Chem. Eur. J. 2001;7:2528–2535. doi: 10.1002/1521-3765(20010618)7:12<2528::AID-CHEM25280>3.0.CO;2-9. PubMed DOI

Wang Y.-H., Zhang H.-M., Liu L., Liang Z.-X., Guo Q.-X., Tung C.-H., Inoue Y., Liu Y.-C. Photoinduced Electron Transfer in a Supramolecular Species Building of Mono-6-p-Nitrobenzoyl-β-Cyclodextrin with Naphthalene Derivatives. J. Org. Chem. 2002;67:2429–2434. doi: 10.1021/jo0108008. PubMed DOI

Chan W.-K., Yu W.-Y., Che C.-M., Wong M.-K. A Cyclodextrin-Modified Ketoester for Stereoselective Epoxidation of Alkenes. J. Org. Chem. 2003;68:6576–6582. doi: 10.1021/jo034296d. PubMed DOI

Kurochkina G.I., Kudryavtseva N.A., Grachev M.K., Lysenko S.A., Nifant’ev E.E. Investigation of Acylation of β-Cyclodextrin and Its Silyl Derivative with Benzoyl and Acetylsalicyloyl Chlorides. Russ. J. Gen. Chem. 2007;77:450–457. doi: 10.1134/S107036320703019X. DOI

Tang Y., Li C. Preparation of Novel Amphiphilic Copolymer Microspheres and Their Drug-Release and Glucose-Sensitive Properties. J. Appl. Polym. Sci. 2008;107:3848–3852. doi: 10.1002/app.27211. DOI

Ma P., Sun J., Huang Q., Wang J., Wang Z. β-Cyclodextrin Conjugates for the Intestinal Delivery of p-Aminobenzoic Acid: Synthesis, and in Vitro Assessment. J. Inclusion Phenom. Macrocyclic Chem. 2015;83:199–202. doi: 10.1007/s10847-015-0545-4. DOI

Ueno A., Suzuki I., Osa T. Association Dimers, Excimers, and Inclusion Complexes of Pyrene-Appended γ-Cyclodextrins. J. Am. Chem. Soc. 1989;111:6391–6397. doi: 10.1021/ja00198a061. DOI

Hoshino T., Miyauchi M., Kawaguchi Y., Yamaguchi H., Harada A. Daisy Chain Necklace: Tri[2]Rotaxane Containing Cyclodextrins. J. Am. Chem. Soc. 2000;122:9876–9877. doi: 10.1021/ja0018264. DOI

Yang C., Mori T., Wada T., Inoue Y. Supramolecular Enantiodifferentiating Photoisomerization of (Z,Z)-1,3-Cyclooctadiene Included and Sensitized by Naphthalene-Modified Cyclodextrins. New J. Chem. 2007;31:697–702. doi: 10.1039/b615353d. DOI

El-Kamel A.H., Abdel-Aziz A.A.-M., Fatani A.J., El-Subbagh H.I. Oral Colon Targeted Delivery Systems for Treatment of Inflammatory Bowel Diseases: Synthesis, in Vitro and in Vivo Assessment. Int. J. Pharm. 2008;358:248–255. doi: 10.1016/j.ijpharm.2008.04.021. PubMed DOI

Miyauchi M., Hoshino T., Yamaguchi H., Kamitori S., Harada A. A [2]Rotaxane Capped by a Cyclodextrin and a Guest:  Formation of Supramolecular [2]Rotaxane Polymer. J. Am. Chem. Soc. 2005;127:2034–2035. doi: 10.1021/ja042840+. PubMed DOI

Sakuraba H., Maekawa H. Enantioselective Oxidation of Sulfides Catalyzed by Chiral MoV and CuII Complexes of Catechol-Appended β-Cyclodextrin Derivatives in Water. J. Inclusion Phenom. Macrocyclic Chem. 2006;54:41–45. doi: 10.1007/s10847-005-3490-9. DOI

Barr L., Lincoln S.F., Easton C.J. Reversal of Regioselectivity and Enhancement of Rates of Nitrile Oxide Cycloadditions through Transient Attachment of Dipolarophiles to Cyclodextrins. Chem. Eur. J. 2006;12:8571–8580. doi: 10.1002/chem.200600627. PubMed DOI

Inoue Y., Miyauchi M., Nakajima H., Takashima Y., Yamaguchi H., Harada A. Self-Threading of a Poly(Ethylene Glycol) Chain in a Cyclodextrin-Ring: Control of the Exchange Dynamics by Chain Length. J. Am. Chem. Soc. 2006;128:8994–8995. doi: 10.1021/ja061095t. PubMed DOI

Gao C., Ma X., Zhang Q., Wang Q., Qu D., Tian H. A Light-Powered Stretch–Contraction Supramolecular System Based on Cobalt Coordinated [1]Rotaxane. Org. Biomol. Chem. 2011;9:1126–1132. doi: 10.1039/C0OB00764A. PubMed DOI

Maeda K., Mochizuki H., Osato K., Yashima E. Stimuli-Responsive Helical Poly(Phenylacetylene)s Bearing Cyclodextrin Pendants That Exhibit Enantioselective Gelation in Response to Chirality of a Chiral Amine and Hierarchical Super-Structured Helix Formation. Macromolecules. 2011;44:3217–3226. doi: 10.1021/ma200537p. DOI

Pedotti S., Pistarà V., Cannavà C., Carbone C., Cilurzo F., Corsaro A., Puglisi G., Ventura C.A. Synthesis and Physico-Chemical Characterization of a β-Cyclodextrin Conjugate for Sustained Release of Acyclovir. Carbohydr. Polym. 2015;131:159–167. doi: 10.1016/j.carbpol.2015.05.071. PubMed DOI

Ueno A., Moriwaki F., Osa T., Hamada F., Murai K. Unique Binding Behavior of γ-Cyclodextrin Bearing a Ferrocene Moiety. Chem. Pharm. Bull. 1986;34:438–441. doi: 10.1248/cpb.34.438. DOI

Ueno A., Moriwaki F., Osa T., Hamada F., Murai K. Association, Photodimerization, and Induced-Fit Types of Host-Guest Complexation of Anthracene-Appended γ-Cyclodextrin Derivatives. J. Am. Chem. Soc. 1988;110:4323–4328. doi: 10.1021/ja00221a036. DOI

Jiao P., Wang S., Liang S., Li M., Gao Q., Ji D., Chen Y., Li H., Ran F., Zhang Y., et al. Facile Preparation and Characterization of Novel Oleanane-Type Triterpene Functionalized β-Cyclodextrin Conjugates. Chin. Chem. Lett. 2019;30:690–693. doi: 10.1016/j.cclet.2018.10.009. DOI

Shipilov D.A., Kurochkina G.I., Rasadkina E.N., Vasyanina L.K., Soboleva N.O., Grachev M.K. Direct Esterification of the Hydroxyl Groups of β-Cyclodextrin with Some Aromatic Monocarboxylic Acids. Russ. J. Gen. Chem. 2015;85:2605–2608. doi: 10.1134/S107036321511016X. DOI

Nielsen A.L., Steffensen K., Wimmer R., Worm-Leonhard M., Larsen K.L. Syntheses and Characterisation of Novel Cyclodextrin Vinyl Derivatives from Cyclodextrin-Nitrophenol-Derivatives. J. Inclusion Phenom. Macrocyclic Chem. 2010;67:303–315. doi: 10.1007/s10847-009-9711-x. DOI

Martina K., Puntambekar D.S., Barge A., Gallarate M., Chirio D., Cravotto G. Synthesis, Characterization and Potential Application of Monoacyl-Cyclodextrins. Carbohydr. Res. 2010;345:191–198. doi: 10.1016/j.carres.2009.11.009. PubMed DOI

Reetz M.T., Rudolph J. Synthesis of a Phosphine-Modified Cyclodextrin and Its Rhodium Complex. Tetrahedron Asymmetry. 1993;4:2405–2406. doi: 10.1016/S0957-4166(00)82210-7. DOI

Peroche S., Parrot-Lopez H. Novel Fluorinated Amphiphilic Cyclodextrin Derivatives: Synthesis of Mono-, Di- and Heptakis-(6-Deoxy-6-Perfluoroalkylthio)-β-Cyclodextrins. Tetrahedron Lett. 2003;44:241–245. doi: 10.1016/S0040-4039(02)02539-X. DOI

Milović N.M., Badjić J.D., Kostić N.M. Conjugate of Palladium(II) Complex and β-Cyclodextrin Acts as a Biomimetic Peptidase. J. Am. Chem. Soc. 2004;126:696–697. doi: 10.1021/ja038404p. PubMed DOI

Steffen A., Thiele C., Tietze S., Strassnig C., Kämper A., Lengauer T., Wenz G., Apostolakis J. Improved Cyclodextrin-Based Receptors for Camptothecin by Inverse Virtual Screening. Chem. Eur. J. 2007;13:6801–6809. doi: 10.1002/chem.200700661. PubMed DOI

Yuan D.-Q., Kitagawa Y., Fukudome M., Fujita K. A Vector-Selective Reaction Enables Efficient Construction of Specific Topology upon the Primary Side of β-Cyclodextrin. Org. Lett. 2007;9:4591–4594. doi: 10.1021/ol702098m. PubMed DOI

Lanza V., Vecchio G. New Conjugates of Superoxide Dismutase/Catalase Mimetics with Cyclodextrins. J. Inorg. Biochem. 2009;103:381–388. doi: 10.1016/j.jinorgbio.2008.11.017. PubMed DOI

Li W.-J., Fan Z., Diao C.-H., Wang M. The Binding Behavior of a Helical Column Supramolecule Formed by 6-Deoxy-6-(2-Pyrimidinethio)-β-Cyclodextrin in Both Solution and the Solid State. Carbohydr. Res. 2012;349:103–107. doi: 10.1016/j.carres.2011.11.018. PubMed DOI

Boonleang J., Stobaugh J.F. New Single Isomer Negatively Charged β-Cyclodextrin Derivatives as Chiral Selectors in Capillary Electrophoresis: CE and CEC. Electrophoresis. 2013;34:1232–1240. doi: 10.1002/elps.201200591. PubMed DOI

Lampropoulou M., Misiakos K., Paravatou M., Mavridis I.M., Yannakopoulou K. Synthesis of Cyclodextrin Derivatives with Monosaccharides and Their Binding with Ampicillin and Selected Lectins. Arkivoc. 2015:232–243. doi: 10.3998/ark.5550190.p009.003. DOI

Bednářová E., Hybelbauerová S., Jindřich J. Optimized Methods for Preparation of 6I-(ω-Sulfanyl-Alkylene-Sulfanyl)-β-Cyclodextrin Derivatives. Beilstein J. Org. Chem. 2016;12:349–352. doi: 10.3762/bjoc.12.38. PubMed DOI PMC

Ikeda H., Nishikawa S., Yamamoto Y., Ueno A. Homotropic Cooperativity of Cyclodextrin Dimer as an Artificial Hydrolase. J. Mol. Catal. A Chem. 2010;328:1–7. doi: 10.1016/j.molcata.2010.06.005. DOI

Rezac M., Breslow R. A Mutase Mimic with Cobalamin Linked to Cyclodextrin. Tetrahedron Lett. 1997;38:5763–5766. doi: 10.1016/S0040-4039(97)01289-6. DOI

Zhang B., Breslow R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997;119:1676–1681. doi: 10.1021/ja963769d. DOI

Zhang Y.-M., Chen Y., Zhuang R.-J., Liu Y. Construction and Radical Cation Stabilisation of a Supramolecular Dyad by Tetrathiafulvalene-Modified β-Cyclodextrin and Cucurbit[7]Uril. Supramol. Chem. 2011;23:372–378. doi: 10.1080/10610278.2010.521828. DOI

Zhang Y.-M., Chen Y., Zhuang R.-J., Liu Y. Supramolecular Architecture of Tetrathiafulvalene-Bridged Bis(β-Cyclodextrin) with Porphyrin and Its Electron Transfer Behaviors. Photochem. Photobiol. Sci. 2011;10:1393–1398. doi: 10.1039/C0PP00224K. PubMed DOI

Fujita K., Ueda T., Imoto T., Tabushi I., Toh N., Koga T. Guest-Induced Conformational Change of β-Cyclodextrin Capped with an Environmentally Sensitive Chromophore. Bioorg. Chem. 1982;11:72–84. doi: 10.1016/0045-2068(82)90049-9. DOI

Choi J.M., Cho E., Lee B., Jeong D., Choi Y., Yu J.-H., Jung S. Enhancing Bio-Availability of β-Naphthoflavone by Supramolecular Complexation with 6,6′-Thiobis(Methylene)-β-Cyclodextrin Dimer. Carbohydr. Polym. 2016;151:40–50. doi: 10.1016/j.carbpol.2016.05.046. PubMed DOI

Cottaz S., Driguez H. A Convenient Synthesis of S-(α-D- and S-(β-D)-Glucopyranosyl-6-Thiomaltodextrins. Synthesis. 1989;1989:755–758. doi: 10.1055/s-1989-27384. DOI

Sallas F., Leroy P., Marsura A., Nicolas A. First Selective Synthesis of Thio-β-Cyclodextrin Derivatives by a Direct Mitsunobu Reaction on Free β-Cyclodextrin. Tetrahedron Lett. 1994;35:6079–6082. doi: 10.1016/0040-4039(94)88080-8. DOI

Jicsinszky L., Caporaso M., Tuza K., Martina K., Calcio Gaudino E., Cravotto G. Nucleophilic Substitutions of 6I-OMonotosyl-β-Cyclodextrin in a Planetary Ball Mill. ACS Sustainable Chem. Eng. 2016;4:919–929. doi: 10.1021/acssuschemeng.5b01006. DOI

Samal S., Geckeler K.E. The First Synthesis of Water-Soluble Cyclodextrinazafullerenes. Synth. Commun. 2002;32:3367–3372. doi: 10.1081/SCC-120014045. DOI

Quan C.-Y., Chen J.-X., Wang H.-Y., Li C., Chang C., Zhang X.-Z., Zhuo R.-X. Core−Shell Nanosized Assemblies Mediated by the A−β Cyclodextrin Dimer with a Tumor-Triggered Targeting Property. ACS Nano. 2010;4:4211–4219. doi: 10.1021/nn100534q. PubMed DOI

Hein C.D., Liu X.-M., Chen F., Cullen D.M., Wang D. The Synthesis of a Multiblock Osteotropic Polyrotaxane by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Macromol. Biosci. 2010;10:1544–1556. doi: 10.1002/mabi.201000205. PubMed DOI

Seo J.-H., Kakinoki S., Inoue Y., Yamaoka T., Ishihara K., Yui N. Inducing Rapid Cellular Response on RGD-Binding Threaded Macromolecular Surfaces. J. Am. Chem. Soc. 2013;135:5513–5516. doi: 10.1021/ja400817q. PubMed DOI

Bonnet V., Duval R., Tran V., Rabiller C. Mono-N-Glycosidation of β-Cyclodextrin− Synthesis of 6-(β-Cyclodextrinyl-amino)-6-Deoxy-D-Galactosides and of N-(6-Deoxy-β-Cyclodextrinyl)-Galacto-Azepane. Eur. J. Org. Chem. 2003;2003:4810–4818. doi: 10.1002/ejoc.200300449. DOI

Liu X.-M., Lee H.-T., Reinhardt R.A., Marky L.A., Wang D. Novel Biomineral-Binding Cyclodextrins for Controlled Drug Delivery in the Oral Cavity. J. Control. Release. 2007;122:54–62. doi: 10.1016/j.jconrel.2007.06.021. PubMed DOI

Lai H., Zhao T., Deng Y., Fan C., Wu W., Yang C. Assembly-Enhanced Triplet-Triplet Annihilation Upconversion in the Aggregation Formed by Schiff-Base Pt(II) Complex Grafting-Permethyl-β-CD and 9, 10-Diphenylanthracence Dimer. Chin. Chem. Lett. 2019;30:1979–1983. doi: 10.1016/j.cclet.2019.09.009. DOI

Uchida W., Yoshikawa M., Seki T., Miki R., Seki T., Fujihara T., Ishimaru Y., Egawa Y. A Polyrotaxane Gel Using Boronic Acid-Appended γ-Cyclodextrin as a Hybrid Cross-Linker. J. Inclusion Phenom. Macrocyclic Chem. 2017;89:281–288. doi: 10.1007/s10847-017-0755-z. DOI

Nielsen T.T., Wintgens V., Amiel C., Wimmer R., Larsen K.L. Facile Synthesis of β-Cyclodextrin-Dextran Polymers by “Click” Chemistry. Biomacromolecules. 2010;11:1710–1715. doi: 10.1021/bm9013233. PubMed DOI

Yang F., Zhang Y., Guo H. Novel Supramolecular Liquid Crystals: Cyclodextrin-Triphenylene Column Liquid Crystals Based on Click Chemistry. New J. Chem. 2013;37:2275–2279. doi: 10.1039/c3nj00474k. DOI

Xu W., Liang W., Wu W., Fan C., Rao M., Su D., Zhong Z., Yang C. Supramolecular Assembly-Improved Triplet-Triplet Annihilation Upconversion in Aqueous Solution. Chem. Eur. J. 2018;24:16677–16685. doi: 10.1002/chem.201804001. PubMed DOI

Hanessian S., Benalil A., Laferriere C. The Synthesis of Functionalized Cyclodextrins As Scaffolds and Templates for Molecular Diversity, Catalysis, and Inclusion Phenomena. J. Org. Chem. 1995;60:4786–4797. doi: 10.1021/jo00120a023. DOI

Parrot-Lopez H., Djedaïni F., Perly B., Coleman A.W., Galons H., Miocque M. An Approach to Vectorisation of Pharmacologically Active Molecules: The Covalent Binding of Leu-Enkephalin to a Modified β- Cyclodextrin. Tetrahedron Lett. 1990;31:1999–2002. doi: 10.1016/S0040-4039(00)88899-1. DOI

Strickland A.D., Batt C.A. Detection of Carbendazim by Surface-Enhanced Raman Scattering Using Cyclodextrin Inclusion Complexes on Gold Nanorods. Anal. Chem. 2009;81:2895–2903. doi: 10.1021/ac801626x. PubMed DOI

Xin P., Kong H., Sun Y., Zhao L., Fang H., Zhu H., Jiang T., Guo J., Zhang Q., Dong W., et al. Artificial K + Channels Formed by Pillararene-Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew. Chem. Int. Ed. 2019;58:2779–2784. doi: 10.1002/anie.201813797. PubMed DOI

Bauer M., Bernhardt M., Charitat T., Kékicheff P., Fajolles C., Fragneto G., Marques C.M., Daillant J. Membrane Insertion of Sliding Anchored Polymers. Soft Matter. 2013;9:1700–1710. doi: 10.1039/C2SM26972D. DOI

Gonsior N., Ritter H. UCST Behavior of Cyclodextrin-Containing Poly(Pseudo-Betaines) Based on Supramolecular Structures. Macromol. Chem. Phys. 2012;213:382–388. doi: 10.1002/macp.201100336. DOI

Zhang Y.-M., Chen H.-Z., Chen Y., Ding F., Liu Y. Molecular Binding Behaviors of Triazole-Bridged Bis(β-Cyclodextrin)s towards Cinchona Alkaloids. New J. Chem. 2013;37:1554–1560. doi: 10.1039/c3nj00193h. DOI

Mori T., Inoue Y., Liu Y., Ke C., Yang C., Yang Z., Wu W. Synthesis of Functionalized β-Cyclodextrins by “Click Chemistry”. Heterocycles. 2008;76:155–160. doi: 10.3987/COM-08-S(N)16. DOI

Mourer M., Hapiot F., Monflier E., Menuel S. Click Chemistry as an Efficient Tool to Access β-Cyclodextrin Dimers. Tetrahedron. 2008;64:7159–7163. doi: 10.1016/j.tet.2008.05.095. DOI

Diallo A.K., Menuel S., Monflier E., Ruiz J., Astruc D. ‘Click’ Synthesis of Ferrocenyl-, Biferrocenyl-, and Cobalticenyl-Triazolyl-β-Cyclodextrins. Tetrahedron Lett. 2010;51:4617–4619. doi: 10.1016/j.tetlet.2010.06.115. DOI

Watanabe S., Sato S., Ohtsuka K., Takenaka S. Electrochemical DNA Analysis with a Supramolecular Assembly of Naphthalene Diimide, Ferrocene, and β-Cyclodextrin. Anal. Chem. 2011;83:7290–7296. doi: 10.1021/ac200989c. PubMed DOI

Zhang G., Luan Y., Han X., Wang Y., Wen X., Ding C., Gao J. A Palladium Complex with Functionalized β-Cyclodextrin: A Promising Catalyst Featuring Recognition Abilities for Suzuki–Miyaura Coupling Reactions in Water. Green Chem. 2013;15:2081–2085. doi: 10.1039/c3gc40645h. DOI

Guo H., Yang F., Zhang Y., Di X. Facile Synthesis of Mono- and Polytopic β -Cyclodextrin Aromatic Aldehydes by Click Chemistry. Synth. Commun. 2015;45:338–347. doi: 10.1080/00397911.2014.963400. DOI

Sun T., Wang Q., Bi Y., Chen X., Liu L., Ruan C., Zhao Z., Jiang C. Supramolecular Amphiphiles Based on Cyclodextrin and Hydrophobic Drugs. J. Mater. Chem. B. 2017;5:2644–2654. doi: 10.1039/C6TB03272A. PubMed DOI

Cravotto G., Mendicuti F., Martina K., Tagliapietra S., Robaldo B., Barge A. A New Access to Homo- and Heterodimers of α-, β-, and γ-Cyclodextrin by a Microwave-Promoted Huisgen Cycloaddition. Synlett. 2008;2008:2642–2646. doi: 10.1055/s-0028-1083379. DOI

Legros V., Vanhaverbeke C., Souard F., Len C., Désiré J. β-Cyclodextrin-Glycerol Dimers: Synthesis and NMR Conformational Analysis: β-Cyclodextrin-Glycerol Dimers. Eur. J. Org. Chem. 2013;2013:2583–2590. doi: 10.1002/ejoc.201201716. DOI

Yan Q., Yuan J., Cai Z., Xin Y., Kang Y., Yin Y. Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. J. Am. Chem. Soc. 2010;132:9268–9270. doi: 10.1021/ja1027502. PubMed DOI

Cakir N., Hizal G., Becer C.R. Supramolecular Glycopolymers with Thermo-Responsive Self-Assembly and Lectin Binding. Polym. Chem. 2015;6:6623–6631. doi: 10.1039/C5PY00939A. DOI

Paolino M., Komber H., Mennuni L., Caselli G., Appelhans D., Voit B., Cappelli A. Supramolecular Glycodendrimer-Based Hybrid Drugs. Biomacromolecules. 2014;15:3985–3993. doi: 10.1021/bm501057d. PubMed DOI

Kim H.-Y., Sohn J., Wijewickrama G.T., Edirisinghe P., Gherezghiher T., Hemachandra M., Lu P.-Y., Chandrasena R.E., Molloy M.E., Tonetti D.A., et al. Click Synthesis of Estradiol–Cyclodextrin Conjugates as Cell Compartment Selective Estrogens. Bioorg. Med. Chem. 2010;18:809–821. doi: 10.1016/j.bmc.2009.11.046. PubMed DOI PMC

Tomanová P., Šturala J., Buděšínský M., Cibulka R. A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts. Molecules. 2015;20:19837–19848. doi: 10.3390/molecules201119667. PubMed DOI PMC

Shi W.-J., Menting R., Ermilov E.A., Lo P.-C., Röder B., Ng D.K.P. Formation and Photoinduced Processes of the Host–Guest Complexes of a β-Cyclodextrin-Conjugated Aza-BODIPY and Tetrasulfonated Porphyrins. Chem. Commun. 2013;49:5277–5279. doi: 10.1039/c3cc00095h. PubMed DOI

Chiba J., Sakai A., Yamada S., Fujimoto K., Inouye M. A Supramolecular DNA Self-Assembly Based on β-Cyclodextrin–Adamantane Complexation as a Bioorthogonal Sticky End Motif. Chem. Commun. 2013;49:6454–6456. doi: 10.1039/c3cc43109f. PubMed DOI

Legros V., Hamon F., Violeau B., Turpin F., Djedaini-Pilard F., Désiré J., Len C. Toward the Supramolecular Cyclodextrin Dimers Using Nucleobase Pairs. Synthesis. 2011:235–242. doi: 10.1055/s-0030-1258354. DOI

Bai Y., Fan X., Yao H., Yang Z., Liu T., Zhang H., Zhang W., Tian W. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host–Guest Recognition or Hydrophilic–Hydrophobic Interaction? J. Phys. Chem. B. 2015;119:11893–11899. doi: 10.1021/acs.jpcb.5b05317. PubMed DOI

Diget J.S., Städe L.W., Nielsen T.T. Direct Synthesis of Well-Defined Zwitterionic Cyclodextrin Polymers via Atom Transfer Radical Polymerization. Eur. Polym. J. 2019;116:84–90. doi: 10.1016/j.eurpolymj.2019.03.020. DOI

Cintas P., Barge A., Tagliapietra S., Boffa L., Cravotto G. Alkyne–Azide Click Reaction Catalyzed by Metallic Copper under Ultrasound. Nat. Protoc. 2010;5:607–616. doi: 10.1038/nprot.2010.1. PubMed DOI

Rinaldi L., Martina K., Baricco F., Rotolo L., Cravotto G. Solvent-Free Copper-Catalyzed Azide-Alkyne Cycloaddition under Mechanochemical Activation. Molecules. 2015;20:2837–2849. doi: 10.3390/molecules20022837. PubMed DOI PMC

Cintas P., Martina K., Robaldo B., Garella D., Boffa L., Cravotto G. Improved Protocols for Microwave-Assisted Cu(I)-Catalyzed Huisgen 1,3-Dipolar Cycloadditions. Collect. Czech. Chem. Commun. 2007;72:1014–1024. doi: 10.1135/cccc20071014. DOI

Megia-Fernandez A., Ortega-Muñoz M., Lopez-Jaramillo J., Hernandez-Mateo F., Santoyo-Gonzalez F. Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Adv. Synth. Catal. 2010;352:3306–3320. doi: 10.1002/adsc.201000530. DOI

Liu Y., Yang Z.-X., Chen Y. Syntheses and Self-Assembly Behaviors of the Azobenzenyl Modified β-Cyclodextrins Isomers. J. Org. Chem. 2008;73:5298–5304. doi: 10.1021/jo800488f. PubMed DOI

Munteanu M., Choi S., Ritter H. Cyclodextrin Methacrylate via Microwave-Assisted Click Reaction. Macromolecules. 2008;41:9619–9623. doi: 10.1021/ma8018975. DOI

Yuan D.-Q., Yang C., Fukuda T., Fujita K. An Efficient Strategy for the Modification of α-Cyclodextrin: Direct Conversion of One or Two Adjacent 6-OHs to Phthalimides. Tetrahedron Lett. 2003;44:565–568. doi: 10.1016/S0040-4039(02)02503-0. DOI

Tang W., Muderawan I.W., Ong T.-T., Ng S.-C. Facile Synthesis of Positively Charged Monosubstituted α- and γ-Cyclodextrins for Chiral Resolution of Anionic Racemates. Tetrahedron Asymmetry. 2007;18:1548–1553. doi: 10.1016/j.tetasy.2007.06.017. DOI

Reddy L.R., Reddy M.A., Bhanumathi N., Rao K.R. An Efficient Protocol for the Reduction of Azidocyclodextrins Catalyzed by Indium. Indian J. Chem. Sect. B. 2002;41B:645–646.

Onagi H., Easton C.J., Lincoln S.F. An Hermaphrodite [2]Rotaxane: Preparation and Analysis of Structure. Org. Lett. 2001;3:1041–1044. doi: 10.1021/ol015607e. PubMed DOI

Popr M., Filippov S.K., Matushkin N., Dian J., Jindřich J. Properties of Cationic Monosubstituted Tetraalkylammonium Cyclodextrin Derivatives – Their Stability, Complexation Ability in Solution or When Deposited on Solid Anionic Surface. Beilstein J. Org. Chem. 2015;11:192–199. doi: 10.3762/bjoc.11.20. PubMed DOI PMC

Puglisi A., Spencer J., Clarke J., Milton J. Microwave-Assisted Synthesis of 6-Amino-β-Cyclodextrins. J. Inclusion Phenom. Macrocyclic Chem. 2012;73:475–478. doi: 10.1007/s10847-011-0054-z. DOI

Liu P., He W., Qin X.-Y., Sun X.-L., Chen H., Zhang S.-Y. Synthesis and Application of a Novel Single-Isomer Mono-6-Deoxy-6-((2S,3S)-(+)-2,3-O-Isopropylidene-1,4-Tetramethylenediamine)-β-Cyclodextrin as Chiral Selector in Capillary Electrophoresis. Chirality. 2010;22:914–921. doi: 10.1002/chir.20859. PubMed DOI

Liu Y., Han B.-H., Sun S.-X., Wada T., Inoue Y. Molecular Recognition Study on Supramolecular Systems. 20. Molecular Recognition and Enantioselectivity of Aliphatic Alcohols by l-Tryptophan-Modified β-Cyclodextrin. J. Org. Chem. 1999;64:1487–1493. doi: 10.1021/jo981891k. PubMed DOI

Ueno A., Moriwaki F., Osa T., Hamada F., Murai K. Excimer Formation in Inclusion Complexes of Modified Cyclodextrins. Tetrahedron. 1987;43:1571–1578. doi: 10.1016/S0040-4020(01)90271-6. DOI

Lo Meo P., D’Anna F., Riela S., Gruttadauria M., Noto R. Spectrophotometric Determination of Binding Constants between Some Aminocyclodextrins and Nitrobenzene Derivatives at Various pH Values. Tetrahedron. 2002;58:6039–6045. doi: 10.1016/S0040-4020(02)00579-3. DOI

Kikuchi T., Narita M., Hamada F. Synthesis of Bis Dansyl-Modified β-Cyclodextrin Liner Trimer Having Multi-Recognition Sites and High Hydrophobic Environment. Tetrahedron. 2001;57:9317–9324. doi: 10.1016/S0040-4020(01)00935-8. DOI

Deng W., Yamaguchi H., Takashima Y., Harada A. Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins. Chem. Asian J. 2008;3:687–695. doi: 10.1002/asia.200700378. PubMed DOI

Prashar D., Cui D., Bandyopadhyay D., Luk Y.-Y. Modification of Proteins with Cyclodextrins Prevents Aggregation and Surface Adsorption and Increases Thermal Stability. Langmuir. 2011;27:13091–13096. doi: 10.1021/la203271u. PubMed DOI

Yoon J., Hong S., Martin K.A., Czarnik A.W. A General Method for the Synthesis of Cyclodextrinyl Aldehydes and Carboxylic Acids. J. Org. Chem. 1995;60:2792–2795. doi: 10.1021/jo00114a030. DOI

Sallas F., Marsura A., Petot V., Pintér I., Kovács J., Jicsinszky L. Synthesis and Study of New β-Cyclodextrin ‘Dimers’ Having a Metal Coordination Center and Carboxamide or Urea Linkers. Helv. Chim. Acta. 1998;81:632–645. doi: 10.1002/hlca.19980810314. DOI

Nakamura A., Inoue Y. Electrostatic Manipulation of Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate within γ-Cyclodextrin Cavity through Chemical Modification. Inverted Product Distribution and Enhanced Enantioselectivity. J. Am. Chem. Soc. 2005;127:5338–5339. doi: 10.1021/ja050704e. PubMed DOI

De los Reyes-Berbel E., Ortiz-Gomez I., Ortega-Muñoz M., Salinas-Castillo A., Capitan-Vallvey L.F., Hernandez-Mateo F., Lopez-Jaramillo F.J., Santoyo-Gonzalez F. Carbon Dots-Inspired Fluorescent Cyclodextrins: Competitive Supramolecular “off–on” (Bio)Sensors. Nanoscale. 2020;12:9178–9185. doi: 10.1039/D0NR01004A. PubMed DOI

Suzuki I., Ui M., Yamauchi A. Supramolecular Probe for Bicarbonate Exhibiting Anomalous Pyrene Fluorescence in Aqueous Media. J. Am. Chem. Soc. 2006;128:4498–4499. doi: 10.1021/ja055772f. PubMed DOI

Rosenthal M.I., Czarnik A.W. Rapid Transacylations of Activated Ester Substrates Bound to the Primary Side β-Cyclodextrin-Cyclen Conjugate and Its M2+ Complexes. J. Inclusion Phenom. Mol. Recognit. Chem. 1991;10:119–126. doi: 10.1007/BF01041645. DOI

Rong D., Ye H., Boehlow T.R., D’Souza V.T. Artificial Redox Enzymes. 1. Synthetic Strategies. J. Org. Chem. 1992;57:163–167. doi: 10.1021/jo00027a031. DOI

Hamada F., Murai K., Ueno A., Suzuki I., Osa T. Excimer Formation and Intramolecular Self-Complexation of Double-Armed γ-Cyclodextrin. Bull. Chem. Soc. Jpn. 1988;61:3758–3760. doi: 10.1246/bcsj.61.3758. DOI

Hui T.-W., Cui J.-F., Wong M.-K. Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(iii)-Catalyzed Three-Component Coupling Reaction. RSC Adv. 2017;7:14477–14480. doi: 10.1039/C7RA00249A. DOI

Binkowski C., Hapiot F., Lequart V., Martin P., Monflier E. Evidence of a Self-Inclusion Phenomenon for a New Class of Mono-Substituted Alkylammonium-β-Cyclodextrins. Org. Biomol. Chem. 2005;3:1129–1133. doi: 10.1039/B416018E. PubMed DOI

Wang Q., Yang C., Ke C., Fukuhara G., Mori T., Liu Y., Inoue Y. Wavelength-Controlled Supramolecular Photocyclodimerization of Anthracenecarboxylate Mediated by γ-Cyclodextrins. Chem. Commun. 2011;47:6849–6851. doi: 10.1039/c1cc11771h. PubMed DOI

Wang L.-Y., Li F.-M., Huang Y., Mei M.-Y., Zhang Z.-X. Synthesis and Properties of Novel Hemicyanine Dye-β-Cyclodextrin. Chin. J. Chem. 2007;25:1192–1195. doi: 10.1002/cjoc.200790222. DOI

Huh K.M., Tomita H., Lee W.K., Ooya T., Yui N. Synthesis of α-Cyclodextrin-Conjugated Poly(ε-Lysine)s and Their Inclusion Complexation Behavior. Macromol. Rapid Commun. 2002;23:179–182. doi: 10.1002/1521-3927(20020201)23:3<179::AID-MARC179>3.0.CO;2-U. DOI

Martin K.A., Czarnik A.W. Facile Preparation of the β-Cyclodextrinyl Aldehyde. Tetrahedron Lett. 1994;35:6781–6782. doi: 10.1016/0040-4039(94)85003-8. DOI

Nace H., Monagle J. Notes: Reactions of Sulfoxides with Organic Halides. Preparation of Aldehydes and Ketones. J. Org. Chem. 1959;24:1792–1793. doi: 10.1021/jo01093a608. DOI

Bertolla C., Rolin S., Evrard B., Pochet L., Masereel B. Synthesis and Pharmacological Evaluation of a New Targeted Drug Carrier System: β-Cyclodextrin Coupled to Oxytocin. Bioorg. Med. Chem. Lett. 2008;18:1855–1858. doi: 10.1016/j.bmcl.2008.02.017. PubMed DOI

Swamy J.N., Winter R.E.K., Jeffreys C.R., D’Souza V.T. Synthetic Methodology for Cyclodextrin–Dipyrromethane Conjugates. Tetrahedron Lett. 2004;45:7595–7597. doi: 10.1016/j.tetlet.2004.08.121. DOI

Deunf E., Buriez O., Labbé E., Verpeaux J.-N., Amatore C. Design and Electrochemical Characterization of a New Cobalt(II)–Cyclodextrin Complex. Evidence for a Supramolecular Stabilization of the Co(I) State. Electrochem. Commun. 2009;11:114–117. doi: 10.1016/j.elecom.2008.10.044. DOI

Liu Y., Chen Y., Li L., Huang G., You C.-C., Zhang H.-Y., Wada T., Inoue Y. Cooperative Multiple Recognition by Novel Calix[4]Arene-Tethered β-Cyclodextrin and Calix[4]Arene-Bridged Bis(β-Cyclodextrin) J. Org. Chem. 2001;66:7209–7215. doi: 10.1021/jo015673u. PubMed DOI

Malenkovskaya M.A., Shipilov D.A., Vasyanina L.K., Grachev M.K. Synthesis of 6-Monoaldehyde of β-Cyclodextrin and Imino Derivatives on Its Basis. Russ. J. Gen. Chem. 2016;86:2725–2727. doi: 10.1134/S1070363216120306. DOI

Miyauchi M., Harada A. Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests. J. Am. Chem. Soc. 2004;126:11418–11419. doi: 10.1021/ja046562q. PubMed DOI

Leray E., Parrot-Lopez H., Augé C., Coleman A.W., Finance C., Bonaly R. Chemical–Enzymatic Synthesis and Bioactivity of Mono-6-[Gal-β-1,4-GlcNAc-β-(1,6′)-Hexyl]Amido-6-Deoxy-Cycloheptaamylose. J. Chem. Soc. Chem. Commun. 1995:1019–1020. doi: 10.1039/C39950001019. DOI

Harada A., Kobayashi R., Takashima Y., Hashidzume A., Yamaguchi H. Macroscopic Self-Assembly through Molecular Recognition. Nature. Chem. 2011;3:34–37. doi: 10.1038/nchem.893. PubMed DOI

Meyer A.G., Easton C.J., Lincoln S.F., Simpson G.W. β-Cyclodextrin as a Scaffold for Supramolecular Chemistry, To Reverse the Regioselectivity of Nitrile Oxide Cycloadditions. J. Org. Chem. 1998;63:9069–9075. doi: 10.1021/jo9817321. DOI

Surpateanu G.G., Landy D., Lungu C.N., Fourmentin S., Surpateanu G., Réthoré C., Avarvari N. Synthesis and Inclusion Capability of a β-Cyclodextrin-Tetrathiafulvalene Derivative. Tetrahedron. 2006;62:9701–9704. doi: 10.1016/j.tet.2006.07.088. DOI

Maeda K., Mochizuki H., Watanabe M., Yashima E. Switching of Macromolecular Helicity of Optically Active Poly(Phenylacetylene)s Bearing Cyclodextrin Pendants Induced by Various External Stimuli. J. Am. Chem. Soc. 2006;128:7639–7650. doi: 10.1021/ja060858+. PubMed DOI

Becuwe M., Delattre F., Surpateanu G.G., Cazier F., Woisel P., Garçon G., Shirali P., Surpateanu G. Synthesis of New Fluorescent β-Cyclodextrin Sensor. Heterocycl. Commun. 2005;11:355–360. doi: 10.1515/HC.2005.11.3-4.355. DOI

Takahashi H., Takashima Y., Yamaguchi H., Harada A. Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrin−β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimers. J. Org. Chem. 2006;71:4878–4883. doi: 10.1021/jo0604686. PubMed DOI

Tsumoto H., Kawahara S., Fujisawa Y., Suzuki T., Nakagawa H., Kohda K., Miyata N. Syntheses of Water-Soluble [60]Fullerene Derivatives and Their Enhancing Effect on Neurite Outgrowth in NGF-Treated PC12 Cells. Bioorg. Med. Chem. Lett. 2010;20:1948–1952. doi: 10.1016/j.bmcl.2010.01.142. PubMed DOI

Yan J., Zhang X., Zhang X., Liu K., Li W., Wu P., Zhang A. Thermoresponsive Supramolecular Dendrimers via Host-Guest Interactions. Macromol. Chem. Phys. 2012;213:2003–2010. doi: 10.1002/macp.201200320. DOI

Onagi H., Blake C.J., Easton C.J., Lincoln S.F. Installation of a Ratchet Tooth and Pawl to Restrict Rotation in a Cyclodextrin Rotaxane. Chem. Eur. J. 2003;9:5978–5988. doi: 10.1002/chem.200305280. PubMed DOI

Yan J.-M., Atsumi M., Yuan D.-Q., Fujita K. (Ethylenediaminetetraacetic Acid)Cerium(IV) [CeIV(EDTA)] Complexes with Dual Hydrophobic Binding Sites as Highly Efficient Catalysts for the Hydrolysis of Phosphodiesters. Helv. Chim. Acta. 2002;85:1496–1504. doi: 10.1002/1522-2675(200205)85:5<1496::AID-HLCA1496>3.0.CO;2-2. DOI

Wyness O., May B.L., Clements P., Lincoln S.F., Easton C.J. Diazacoronand-Linked α- and β-Cyclodextrin Dimer Complexes of the Brilliant Yellow Tetraanion. Aust. J. Chem. 2004;57:571–576. doi: 10.1071/CH03268. PubMed DOI

Zhao L.-J., Yang S.-L., Jin W., Yang H.-W., Li F.-Y., Chi S.-M., Zhu H.-Y., Lei Z., Zhao Y. Host-Guest Inclusion Systems of Morin Hydrate and Quercetin with Two Bis(β-Cyclodextrin)s: Preparation, Characterization, and Antioxidant Activity. Aust. J. Chem. 2019;72:440–449. doi: 10.1071/CH18580. DOI

Mallard I., Landy D., Bouchemal N., Fourmentin S. Synthesis and Inclusion Ability of Anthracene Appended β-Cyclodextrins: Unexpected Effect of Triazole Linker. Carbohydr. Res. 2011;346:35–42. doi: 10.1016/j.carres.2010.09.031. PubMed DOI

Malanga M., Darcsi A., Balint M., Benkovics G., Sohajda T., Beni S. New Synthetic Strategies for Xanthene-Dye-Appended Cyclodextrins. Beilstein J. Org. Chem. 2016;12:537–548. doi: 10.3762/bjoc.12.53. PubMed DOI PMC

Coulston R.J., Onagi H., Lincoln S.F., Easton C.J. Harnessing the Energy of Molecular Recognition in a Nanomachine Having a Photochemical On/Off Switch. J. Am. Chem. Soc. 2006;128:14750–14751. doi: 10.1021/ja0651761. PubMed DOI

Benito J.M., Gómez-García M., Ortiz Mellet C., Baussanne I., Defaye J., García Fernández J.M. Optimizing Saccharide-Directed Molecular Delivery to Biological Receptors: Design, Synthesis, and Biological Evaluation of Glycodendrimer−Cyclodextrin Conjugates. J. Am. Chem. Soc. 2004;126:10355–10363. doi: 10.1021/ja047864v. PubMed DOI

Aime S., Gianolio E., Palmisano G., Robaldo B., Barge A., Boffa L., Cravotto G. Improved Syntheses of Bis(β-Cyclodextrin) Derivatives, New Carriers for Gadolinium Complexes. Org. Biomol. Cheml. 2006;4:1124–1130. doi: 10.1039/b517068k. PubMed DOI

Rivero-Barbarroja G., Benito J.M., Ortiz Mellet C., García Fernández J.M. Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials. 2020;10:2517. doi: 10.3390/nano10122517. PubMed DOI PMC

Cieslinski M.M., Clements P., May B.L., Easton C.J., Lincoln S.F. Complexation by α- and β-Cyclodextrin C(6) Linked Homo- and Hetero-Dimers of Brilliant Yellow Tetraanion: A Study of Host–Guest Size Relationships. J. Chem. Soc. Perkin Trans. 2002;2:947–952. doi: 10.1039/b200026c. DOI

Charbonnier F., Marsura A., Roussel K., Kovacs J., Pinter I. Studies on the Synthesis and Structure of New Urea-Linked Sugar Podando-Coronand Derivatives. Helv. Chim. Acta. 2001;84:535–551. doi: 10.1002/1522-2675(20010321)84:3<535::AID-HLCA535>3.0.CO;2-T. DOI

Ghera B.B., Fache F., Parrot-Lopez H. Use of the Olefin Metathesis Reaction for Highly Efficient β-Cyclodextrin Modification. Tetrahedron. 2006;62:4807–4813. doi: 10.1016/j.tet.2006.03.010. DOI

White R.J., Plieger P.G., Harding D.R.K. Synthesis of Bifunctional Peptide Derivatives Based on a β-Cyclodextrin Core with Drug Delivery Potential. Tetrahedron Lett. 2010;51:800–803. doi: 10.1016/j.tetlet.2009.11.118. DOI

Huang D., Zhang Y., Zhang H. A Novel Synthesis of Ethyl Carbonate Derivatives of β-Cyclodextrin. Carbohydr. Res. 2013;370:82–85. doi: 10.1016/j.carres.2013.01.022. PubMed DOI

Liu Y., You C.-C., Chen Y., Wada T., Inoue Y. Molecular Recognition Studies on Supramolecular Systems. 25. Inclusion Complexation by Organoselenium-Bridged Bis(β-Cyclodextrin)s and Their Platinum(IV) Complexes. J. Org. Chem. 1999;64:7781–7787. doi: 10.1021/jo990692d. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...