Mono-6-Substituted Cyclodextrins-Synthesis and Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
34443653
PubMed Central
PMC8400779
DOI
10.3390/molecules26165065
PII: molecules26165065
Knihovny.cz E-resources
- Keywords
- applications, cyclodextrins, mono-6-substitution, synthesis,
- Publication type
- Journal Article MeSH
- Review MeSH
Cyclodextrins are well known supramolecular hosts used in a wide range of applications. Monosubstitution of native cyclodextrins in the position C-6 of a glucose unit represents the simplest method how to achieve covalent binding of a well-defined host unit into the more complicated systems. These derivatives are relatively easy to prepare; that is why the number of publications describing their preparations exceeds 1400, and the reported synthetic methods are often very similar. Nevertheless, it might be very demanding to decide which of the published methods is the best one for the intended purpose. In the review, we aim to present only the most useful and well-described methods for preparing different types of mono-6-substituted derivatives. We also discuss the common problems encountered during their syntheses and suggest their optimal solutions.
See more in PubMed
Crini G. Review: A History of Cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Morin-Crini N., Fourmentin S., Fenyvesi É., Lichtfouse E., Torri G., Fourmentin M., Crini G. 130 Years of Cyclodextrin Discovery for Health, Food, Agriculture, and the Industry: A Review. Environ. Chem. Lett. 2021;19:2581–2617. doi: 10.1007/s10311-020-01156-w. DOI
Del Valle E.M.M. Cyclodextrins and Their Uses: A Review. Process. Biochem. 2004;39:1033–1046. doi: 10.1016/S0032-9592(03)00258-9. DOI
Challa R., Ahuja A., Ali J., Khar R.K. Cyclodextrins in Drug Delivery: An Updated Review. AAPS PharmSciTech. 2005;6:E329–E357. doi: 10.1208/pt060243. PubMed DOI PMC
Brewster M.E., Loftsson T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Delivery Rev. 2007;59:645–666. doi: 10.1016/j.addr.2007.05.012. PubMed DOI
Bilensoy E., editor. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011.
Astray G., Gonzalez-Barreiro C., Mejuto J.C., Rial-Otero R., Simal-Gándara J. A Review on the Use of Cyclodextrins in Foods. Food Hydrocoll. 2009;23:1631–1640. doi: 10.1016/j.foodhyd.2009.01.001. DOI
Connors K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997;97:1325–1358. doi: 10.1021/cr960371r. PubMed DOI
Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998;98:1875–1918. doi: 10.1021/cr970015o. PubMed DOI
Schneider H.-J., Hacket F., Rüdiger V., Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998;98:1755–1786. doi: 10.1021/cr970019t. PubMed DOI
Loftsson T., Brewster M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996;85:1017–1025. doi: 10.1021/js950534b. PubMed DOI
Marques H.M.C. A Review on Cyclodextrin Encapsulation of Essential Oils and Volatiles. Flavour Fragr. J. 2010;25:313–326. doi: 10.1002/ffj.2019. DOI
Uekama K. Pharmaceutical Applications of Methylated Cyclodextrins. Pharm. Int. 1985;6:61–65.
Gould S., Scott R.C. 2-Hydroxypropyl-β-Cyclodextrin (HP-β-CD): A Toxicology Review. Food Chem. Toxicol. 2005;43:1451–1459. doi: 10.1016/j.fct.2005.03.007. PubMed DOI
Fillet M., Hubert P., Crommen J. Method Development Strategies for the Enantioseparation of Drugs by Capillary Electrophoresis Using Cyclodextrins as Chiral Additives. Electrophoresis. 1998;19:2834–2840. doi: 10.1002/elps.1150191608. PubMed DOI
Luke D.R., Tomaszewski K., Damle B., Schlamm H.T. Review of the Basic and Clinical Pharmacology of Sulfobutylether-β-Cyclodextrin (SBECD) J. Pharm. Sci. 2010;99:3291–3301. doi: 10.1002/jps.22109. PubMed DOI
Evans C.E., Stalcup A.M. Comprehensive Strategy for Chiral Separations Using Sulfated Cyclodextrins in Capillary Electrophoresis. Chirality. 2003;15:709–723. doi: 10.1002/chir.10285. PubMed DOI
Řezanka M. Monosubstituted Cyclodextrins as Precursors for Further Use. Eur. J. Org. Chem. 2016;2016:5322–5334. doi: 10.1002/ejoc.201600693. PubMed DOI
Řezanka M. Synthesis of Substituted Cyclodextrins. Environ. Chem. Lett. 2019;17:49–63. doi: 10.1007/s10311-018-0779-7. DOI
Welcome to Python.Org. [(accessed on 15 July 2021)]; Available online: https://www.python.org/
Hügel S. Pyzotero: Python Wrapper for the Zotero API. [(accessed on 15 July 2021)]; Available online: https://github.com/urschrei/pyzotero.
Zotero | Your Personal Research Assistant. [(accessed on 15 July 2021)]; Available online: https://www.zotero.org/
Xiao S., Wang Q., Si L., Zhou X., Zhang Y., Zhang L., Zhou D. Synthesis and Biological Evaluation of Novel Pentacyclic Triterpene α -Cyclodextrin Conjugates as HCV Entry Inhibitors. Eur. J. Med. Chem. 2016;124:1–9. doi: 10.1016/j.ejmech.2016.08.020. PubMed DOI
Melton L.D., Slessor K.N. Synthesis of Monosubstituted Cyclohexaamyloses. Carbohydr. Res. 1971;18:29–37. doi: 10.1016/S0008-6215(00)80256-6. DOI
Brown S., Coates J., Coghlan D., Easton C., Vaneyk S., Janowski W., Lepore A., Lincoln S., Luo Y., May B., et al. Synthesis and Properties of 6A-Amino-6A-Deoxy-α and β-Cyclodextrin. Aust. J. Chem. 1993;46:953–958. doi: 10.1071/CH9930953. DOI
Tang W., Ng S.-C. Facile Synthesis of Mono-6-Amino-6-Deoxy-α-, β-, γ-Cyclodextrin Hydrochlorides for Molecular Recognition, Chiral Separation and Drug Delivery. Nat. Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI
Chwalek M., Auzély R., Fort S. Synthesis and Biological Evaluation of Multivalent Carbohydrate Ligands Obtained by Click Assembly of Pseudo-Rotaxanes. Org. Biomol. Chem. 2009;7:1680–1688. doi: 10.1039/b822976g. PubMed DOI
Iijima K., Aoki D., Sogawa H., Asai S., Takata T. Synthesis and Characterization of Supramolecular Cross-Linkers Containing Cyclodextrin Dimer and Trimer. Polym. Chem. 2016;7:3492–3495. doi: 10.1039/C6PY00367B. DOI
Wang M., Zhang X., Li L., Wang J., Wang J., Ma J., Yuan Z., Lincoln S.F., Guo X. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(Acrylic Acid)s: Effect of Substitution Degree, Concentration, and Tethered Chain Length. Macromol. Mater. Eng. 2016;301:191–198. doi: 10.1002/mame.201500295. DOI
Fujita K., Nagamura S., Imoto T., Tahara T., Koga T. Regiospecific Sulfonation of Secondary Hydroxyl Groups of α-Cyclodextrin. Its Application to Preparation of 2A2B, 2A2C-, and 2A2D-Disulfonates. J. Am. Chem. Soc. 1985;107:3233–3235. doi: 10.1021/ja00297a032. DOI
Fujita K., Yamamura H., Matsunaga A., Imoto T., Mihashi K., Fujioka T. 6-Polysubstituted α-Cyclodextrins. Application of Korner’s Absolute Method of Isomer Determination. J. Am. Chem. Soc. 1986;108:4509–4513. doi: 10.1021/ja00275a042. DOI
Lo W., Scott T.A., Zhang P., Ling C.-C., Holm R.H. Stabilities of Cubane Type [Fe4S4(SR)4]2− Clusters in Partially Aqueous Media. J. Inorg. Biochem. 2011;105:497–508. doi: 10.1016/j.jinorgbio.2010.12.009. PubMed DOI PMC
Petter R.C., Salek J.S., Sikorski C.T., Kumaravel G., Lin F.T. Cooperative Binding by Aggregated Mono-6-(Alkylamino)-β-Cyclodextrins. J. Am. Chem. Soc. 1990;112:3860–3868. doi: 10.1021/ja00166a021. DOI
Vizitiu D., Walkinshaw C.S., Gorin B.I., Thatcher G.R.J. Synthesis of Monofacially Functionalized Cyclodextrins Bearing Amino Pendent Groups. J. Org. Chem. 1997;62:8760–8766. doi: 10.1021/jo9711549. DOI
Jicsinszky L., Iványi R. Catalytic Transfer Hydrogenation of Sugar Derivatives. Carbohydr. Polym. 2001;45:139–145. doi: 10.1016/S0144-8617(00)00319-2. DOI
Hacket F., Simova S., Schneider H.-J. The Complexation of Peptides by Aminocyclodextrins. J. Phys. Org. Chem. 2001;14:159–170. doi: 10.1002/poc.348. DOI
McNaughton M., Engman L., Birmingham A., Powis G., Cotgreave I.A. Cyclodextrin-Derived Diorganyl Tellurides as Glutathione Peroxidase Mimics and Inhibitors of Thioredoxin Reductase and Cancer Cell Growth. J. Med. Chem. 2004;47:233–239. doi: 10.1021/jm030916r. PubMed DOI
Tripodo G., Wischke C., Neffe A.T., Lendlein A. Efficient Synthesis of Pure Monotosylated Beta-Cyclodextrin and Its Dimers. Carbohydr. Res. 2013;381:59–63. doi: 10.1016/j.carres.2013.08.018. PubMed DOI
Novokshonov V.V., Xuan N.T.T., Shaglaeva N.S. Synthesis of 6I-O-(4-Methylbenzenesulfonyl)-β-Cyclodextrin. Russ. J. Org. Chem. 2019;55:1616–1617. doi: 10.1134/S1070428019100245. DOI
Defaye J., Gadelle A., Guiller A., Darcy R., O’Sullivan T. Branched Thiocyclomalto-Oligosaccharides: Synthesis and Properties of 6-S-α- and 6-S-β-d-Glucopyranosyl-6-Thiocyclomaltoheptaose. Carbohydr. Res. 1989;192:251–258. doi: 10.1016/0008-6215(89)85184-5. DOI
Ekberg B., Andersson L.I., Mosbach K. The Synthesis of an Active Derivative of Cyclomalto-Heptaose for the Hydrolysis of Esters and the Formation of Amide Bonds. Carbohydr. Res. 1989;192:111–117. doi: 10.1016/0008-6215(89)85171-7. PubMed DOI
Sforza S., Galaverna G., Corradini R., Dossena A., Marchelli R. ESI-Mass Spectrometry Analysis of Unsubstituted and Disubstituted β-Cyclodextrins: Fragmentation Mode and Identification of the AB, AC, AD Regioisomers. J. Am. Soc. Mass Spectrom. 2003;14:124–135. doi: 10.1016/S1044-0305(02)00853-X. PubMed DOI
Byun H.-S., Zhong N., Bittman R. 6A-O-p-Toluenesulfonyl-β-Cyclodextrin. Org. Synth. 2000;77:225–230. doi: 10.15227/orgsyn.077.0225. DOI
Trotta F., Martina K., Robaldo B., Barge A., Cravotto G. Recent Advances in the Synthesis of Cyclodextrin Derivatives under Microwaves and Power Ultrasound. J. Inclusion Phenom. Macrocyclic Chem. 2007;57:3–7. doi: 10.1007/s10847-006-9169-z. DOI
Zhong N., Byun H.-S., Bittman R. An Improved Synthesis of 6-O-Monotosyl-6-Deoxy-β-Cyclodextrin. Tetrahedron Lett. 1998;39:2919–2920. doi: 10.1016/S0040-4039(98)00417-1. DOI
Brady B., Lynam N., O’Sullivan T., Ahern C., Darcy R. 6A-O-p-Toluenesulfonyl-β-Cyclodextrin. Org. Synth. 2000;77:220–224. doi: 10.15227/orgsyn.077.0220. DOI
Xu M., Wu S., Zeng F., Yu C. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing. Langmuir. 2010;26:4529–4534. doi: 10.1021/la9033244. PubMed DOI
Law H., Benito J.M., García Fernández J.M., Jicsinszky L., Crouzy S., Defaye J. Copper(II)-Complex Directed Regioselective Mono-p-Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-Aided Design. J. Phys. Chem. B. 2011;115:7524–7532. doi: 10.1021/jp2035345. PubMed DOI
Wang D., Xie D., Shi W., Sun S., Zhao C. Designing a Photoresponsive Molecularly Imprinted System on a Silicon Wafer Substrate Surface. Langmuir. 2013;29:8311–8319. doi: 10.1021/la401201w. PubMed DOI
Aquino A.M., Abelt C.J., Berger K.L., Darragh C.M., Kelley S.E., Cossette M.V. Synthesis and Photochemistry of Some Anthraquinone-Substituted Beta.-Cyclodextrins. J. Am. Chem. Soc. 1990;112:5819–5824. doi: 10.1021/ja00171a022. DOI
Fujita K., Tahara T., Imoto T., Koga T. Enzymatic Preparation of Specifically Modified Linear Maltooligosaccharides through Taka-Amylase A-Catalyzed Hydrolysis of 6-O-Arenesulfonyl-γ-Cyclodextrins. Chem. Lett. 1988;17:1329–1332. doi: 10.1246/cl.1988.1329. DOI
Van Guyse J.F.R., de la Rosa V.R., Hoogenboom R. Mechanochemical Preparation of Stable Sub-100 Nm γ-Cyclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization. Chem. Eur. J. 2018;24:2758–2766. doi: 10.1002/chem.201705647. PubMed DOI
Pham D.-T., Ngo H.T., Lincoln S.F., May B.L., Easton C.J. Synthesis of C6A-to-C6A and C3A-to-C3A Diamide Linked γ-Cyclodextrin Dimers. Tetrahedron. 2010;66:2895–2898. doi: 10.1016/j.tet.2010.02.005. DOI
Palin R., Grove S.J.A., Prosser A.B., Zhang M.-Q. Mono-6-(O-2,4,6-Triisopropylbenzenesulfonyl)-γ-Cyclodextrin, a Novel Intermediate for the Synthesis of Mono-Functionalised γ-Cyclodextrins. Tetrahedron Lett. 2001;42:8897–8899. doi: 10.1016/S0040-4039(01)01934-7. DOI
Yang C., Nakamura A., Wada T., Inoue Y. Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by γ-Cyclodextrins with a Flexible or Rigid Cap. Org. Lett. 2006;8:3005–3008. doi: 10.1021/ol061004x. PubMed DOI
Popr M., Hybelbauerová S., Jindřich J. A Complete Series of 6-Deoxy-Monosubstituted Tetraalkylammonium Derivatives of α-, β-, and γ-Cyclodextrin with 1, 2, and 3 Permanent Positive Charges. Beilstein J. Org. Chem. 2014;10:1390–1396. doi: 10.3762/bjoc.10.142. PubMed DOI PMC
Fredy J.W., Scelle J., Guenet A., Morel E., Adam de Beaumais S., Ménand M., Marvaud V., Bonnet C.S., Tóth E., Sollogoub M., et al. Cyclodextrin Polyrotaxanes as a Highly Modular Platform for the Development of Imaging Agents. Chem. Eur. J. 2014;20:10915–10920. doi: 10.1002/chem.201403635. PubMed DOI
Kumprecht L., Buděšínský M., Vondrášek J., Vymětal J., Černý J., Císařová I., Brynda J., Herzig V., Koutník P., Závada J., et al. Rigid Duplex α-Cyclodextrin Reversibly Connected with Disulfide Bonds. Synthesis and Inclusion Complexes. J. Org. Chem. 2009;74:1082–1092. doi: 10.1021/jo802139s. PubMed DOI
Ye C., Zhao Y., Chang J., Liu W. Preparation and Chiral Discrimination of R-(-)-2-Phenylglycinol Modified β-Cyclodextrin. J. Chem. Res. 2001;2001:330–331. doi: 10.3184/030823401103169955. DOI
Ogoshi T., Takashima Y., Yamaguchi H., Harada A. Cyclodextrin-Grafted Poly(Phenylene Ethynylene) with Chemically-Responsive Properties. Chem. Commun. 2006;35:3702–3704. doi: 10.1039/b605804c. PubMed DOI
Rodríguez-Lavado J., de la Mata M., Jiménez-Blanco J.L., García-Moreno M.I., Benito J.M., Díaz-Quintana A., Sánchez-Alcázar J.A., Higaki K., Nanba E., Ohno K., et al. Targeted Delivery of Pharmacological Chaperones for Gaucher Disease to Macrophages by a Mannosylated Cyclodextrin Carrier. Org. Biomol. Chem. 2014;12:2289–2301. doi: 10.1039/C3OB42530D. PubMed DOI
Shipilov D.A., Kurochkina G.I., Levina I.I., Malenkovskaya M.A., Grachev M.K. Synthesis of Monocationic β-Cyclodextrin Derivatives. Russ. J. Org. Chem. 2017;53:290–295. doi: 10.1134/S1070428017020257. DOI
Rousseau C., Christensen B., Petersen T.E., Bols M. Cyclodextrins Containing an Acetone Bridge. Synthesis and Study as Epoxidation Catalysts. Org. Biomol. Cheml. 2004;2:3476–3482. doi: 10.1039/b410098k. PubMed DOI
Hauch Fenger T., Bjerre J., Bols M. Cyclodextrin Aldehydes Are Oxidase Mimics. ChemBioChem. 2009;10:2494–2503. doi: 10.1002/cbic.200900448. PubMed DOI
Yamanoi T., Yoshida N., Oda Y., Akaike E., Tsutsumida M., Kobayashi N., Osumi K., Yamamoto K., Fujita K., Takahashi K., et al. Synthesis of Mono-Glucose-Branched Cyclodextrins with a High Inclusion Ability for Doxorubicin and Their Efficient Glycosylation Using Mucor Hiemalis Endo-β-N-Acetylglucosaminidase. Bioorg. Med. Chem. Lett. 2005;15:1009–1013. doi: 10.1016/j.bmcl.2004.12.040. PubMed DOI
Zhou Y., Marinescu L., Pedersen C.M., Bols M. Synthesis of Tin-Containing Cyclodextrins as Potential Enzyme Models. Eur. J. Org. Chem. 2012;2012:6383–6389. doi: 10.1002/ejoc.201200756. DOI
Řezanka M., Eignerová B., Jindřich J., Kotora M. Synthesis of Mono(Perfluoroalkyl) Cyclodextrins via Cross Metathesis. Eur. J. Org. Chem. 2010;2010:6256–6262. doi: 10.1002/ejoc.201000807. DOI
Liu J., Liu R., Jiang J., Liu X. Design and Synthesis of Water-Soluble Photosensitive α-Cyclodextrin and Its Application in Dispersing Carbon Nanotubes. J. Appl. Polym. Sci. 2013;130:2588–2593. doi: 10.1002/app.39372. DOI
Tian S., Zhu H., Forgo P., D’Souza V.T. Selectively Monomodified Cyclodextrins. Synthetic Strategies. J. Org. Chem. 2000;65:2624–2630. doi: 10.1021/jo991347r. PubMed DOI
Lang K., Král V., Kapusta P., Kubát P., Vašek P. Photoinduced Electron Transfer within Porphyrin–Cyclodextrin Conjugates. Tetrahedron Lett. 2002;43:4919–4922. doi: 10.1016/S0040-4039(02)00954-1. DOI
Barata J.F.B., Zamarrón A., Neves M.G.P.M.S., Faustino M.A.F., Tomé A.C., Cavaleiro J.A.S., Röder B., Juarranz Á., Sanz-Rodríguez F. Photodynamic Effects Induced by Meso-Tris(Pentafluorophenyl)Corrole and Its Cyclodextrin Conjugates on Cytoskeletal Components of HeLa Cells. Eur. J. Med. Chem. 2015;92:135–144. doi: 10.1016/j.ejmech.2014.12.025. PubMed DOI
Jindřich J., Tišlerová I. Simple Preparation of 3I-O-Substituted β-Cyclodextrin Derivatives Using Cinnamyl Bromide. J. Org. Chem. 2005;70:9054–9055. doi: 10.1021/jo051339c. PubMed DOI
Liu Y., Yang Y.-W., Li L., Chen Y. Cooperative Molecular Recognition of Dyes by Dyad and Triad Cyclodextrin–Crown Ether Conjugates. Org. Biomol. Chem. 2004;2:1542–1548. doi: 10.1039/B402841D. PubMed DOI
Novokshonov V.V., Hoi N.C., Shaglaeva N.S. Selective Monoallylation of β-Cyclodextrin. Russ. J. Gen. Chem. 2017;87:1172–1174. doi: 10.1134/S1070363217060111. DOI
Bláhová M., Bednářová E., Řezanka M., Jindřich J. Complete Sets of Monosubstituted γ-Cyclodextrins as Precursors for Further Synthesis. J. Org. Chem. 2013;78:697–701. doi: 10.1021/jo301656p. PubMed DOI
Zhang Q.-W., Elemans J.A.A.W., White P.B., Nolte R.J.M. A Manganese Porphyrin–α-Cyclodextrin Conjugate as an Artificial Enzyme for the Catalytic Epoxidation of Polybutadiene. Chem. Commun. 2018;54:5586–5589. doi: 10.1039/C8CC02320D. PubMed DOI
Liu Y., Zhao Y.-L., Zhang H.-Y., Fan Z., Wen G.-D., Ding F. Spectrophotometric Study of Inclusion Complexation of Aliphatic Alcohols by β -Cyclodextrins with Azobenzene Tether. J. Phys. Chem. B. 2004;108:8836–8843. doi: 10.1021/jp0380024. DOI
Casas-Solvas J.M., Martos-Maldonado M.C., Vargas-Berenguel A. Synthesis of β-Cyclodextrin Derivatives Functionalized with Azobenzene. Tetrahedron. 2008;64:10919–10923. doi: 10.1016/j.tet.2008.08.098. DOI
Liu Y., Fan Z., Zhang H.-Y., Yang Y.-W., Ding F., Liu S.-X., Wu X., Wada T., Inoue Y. Supramolecular Self-Assemblies of β -Cyclodextrins with Aromatic Tethers: Factors Governing the Helical Columnar versus Linear Channel Superstructures. J. Org. Chem. 2003;68:8345–8352. doi: 10.1021/jo034632q. PubMed DOI
Puglisi A., Purrello R., Rizzarelli E., Sortino S., Vecchio G. Spectroscopic and Self-Association Behavior of a Porphyrin-β-Cyclodextrin Conjugate. New J. Chem. 2007;31:1499–1506. doi: 10.1039/b703680a. DOI
Fraix A., Gonçalves A.R., Cardile V., Graziano A.C.E., Theodossiou T.A., Yannakopoulou K., Sortino S. A Multifunctional Bichromophoric Nanoaggregate for Fluorescence Imaging and Simultaneous Photogeneration of RNOS and ROS. Chem. Asian J. 2013;8:2634–2641. doi: 10.1002/asia.201300463. PubMed DOI
Zhao Y., Yang Y.C., Shi H., Zhu H.Y., Huang R., Chi C.M., Zhao Y. Synthesis of Novel Bis(β-Cyclodextrin)s Linked with Glycol and Their Inclusion Complexation with Organic Dyes. Helv. Chim. Acta. 2010;93:1136–1148. doi: 10.1002/hlca.200900345. DOI
Park J.W., Song H.E., Lee S.Y. Homodimerization and Heteroassociation of 6-O-(2-Sulfonato-6-Naphthyl)-γ-Cyclodextrin and 6-Deoxy-(Pyrene-1-Carboxamido)-β-Cyclodextrin. J. Org. Chem. 2003;68:7071–7076. doi: 10.1021/jo034623h. PubMed DOI
Krois D., Brecker L., Werner A., Brinker U.H. Carbene Rearrangements, 60. Supramolecular Structure-Reactivity Relationships: Photolysis of a Series of Aziadamantane@Cyclodextrin Inclusion Complexes in the Solid State. Adv. Synth. Catal. 2004;346:1367–1374. doi: 10.1002/adsc.200404142. DOI
Liang G., Lam J.W.Y., Qin W., Li J., Xie N., Tang B.Z. Molecular Luminogens Based on Restriction of Intramolecular Motions through Host–Guest Inclusion for Cell Imaging. Chem. Commun. 2014;50:1725–1727. doi: 10.1039/C3CC48625G. PubMed DOI
Deng T., Wang J., Li Y., Han Z., Peng Y., Zhang J., Gao Z., Gu Y., Deng D. Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by Ingenious Self-Assembly Strategies for Tumor Theranostic. ACS Appl. Mater. Interfaces. 2018;10:27657–27668. doi: 10.1021/acsami.8b08512. PubMed DOI
Liu Y., Li B., You C.-C., Wada T., Inoue Y. Molecular Recognition Studies on Supramolecular Systems. 32. Molecular Recognition of Dyes by Organoselenium-Bridged Bis(β-Cyclodextrin)s. J. Org. Chem. 2001;66:225–232. doi: 10.1021/jo001372t. PubMed DOI
Wu S., Luo Y., Zeng F., Chen J., Chen Y., Tong Z. Photoreversible Fluorescence Modulation of a Rhodamine Dye by Supramolecular Complexation with Photosensitive Cyclodextrin. Angew. Chem. 2007;119:7145–7148. doi: 10.1002/ange.200701396. PubMed DOI
Guo Z., Feng Y., Zhu D., He S., Liu H., Shi X., Sun J., Qu M. Light-Switchable Single-Walled Carbon Nanotubes Based on Host-Guest Chemistry. Adv. Funct. Mater. 2013;23:5010–5018. doi: 10.1002/adfm.201300434. DOI
Michel D., Chitanda J.M., Balogh R., Yang P., Singh J., Das U., El-Aneed A., Dimmock J., Verrall R., Badea I. Design and Evaluation of Cyclodextrin-Based Delivery Systems to Incorporate Poorly Soluble Curcumin Analogs for the Treatment of Melanoma. Eur. J. Pharm. Biopharm. 2012;81:548–556. doi: 10.1016/j.ejpb.2012.03.016. PubMed DOI
Wang Q., Yang C., Fukuhara G., Mori T., Liu Y., Inoue Y. Supramolecular FRET Photocyclodimerization of Anthracenecarboxylate with Naphthalene-Capped γ-Cyclodextrin. Beilstein J. Org. Chem. 2011;7:290–297. doi: 10.3762/bjoc.7.38. PubMed DOI PMC
Yang C., Mori T., Origane Y., Ko Y.H., Selvapalam N., Kim K., Inoue Y. Highly Stereoselective Photocyclodimerization of α-Cyclodextrin-Appended Anthracene Mediated by γ-Cyclodextrin and Cucurbit[8]Uril: A Dramatic Steric Effect Operating Outside the Binding Site. J. Am. Chem. Soc. 2008;130:8574–8575. doi: 10.1021/ja8032923. PubMed DOI
Nakamura K., Seki T., Egawa Y., Miki R., Oda Y., Yamanoi T., Seki T. Sugar-Sensitive Supramolecular Structures Based on Phenylboronic Acid-Modified Cyclodextrins. Chem. Pharm. Bull. 2013;61:1188–1191. doi: 10.1248/cpb.c13-00542. PubMed DOI
Karpkird T., Wanichweacharungruang S. Synthesis and Photostability of Methoxycinnamic Acid Modified Cyclodextrins. J. Photochem. Photobiol. A. 2010;212:56–61. doi: 10.1016/j.jphotochem.2010.03.016. DOI
Edunov A.V., Kurochkina G.I., Grachev M.K., Levina I.I., Batalova T.A., Nifant’ev E.E. α-Cyclodextrin Compounds Containing Benzoic, Acetylsalicylic, and 2-(4-Isobutylphenyl)Propionic Acid Residues. Russ. J. Org. Chem. 2011;47:981–988. doi: 10.1134/S1070428011070037. DOI
Gao X.-M., Tong L.-H., Inoue Y., Tai A. Synthesis and Characterization of Novel Multifunctional Host Compounds. 4. Cyclodextrin Derivatives Bearing Chromophores. Synth. Commun. 1995;25:703–710. doi: 10.1080/00397919508011407. DOI
Liu Y., Chen Y., Li B., Wada T., Inoue Y. Cooperative Multipoint Recognition of Organic Dyes by Bis(-Cyclodextrin)s with 2,2′-Bipyridine-4,4′-Dicarboxy Tethers. Chem. Eur. J. 2001;7:2528–2535. doi: 10.1002/1521-3765(20010618)7:12<2528::AID-CHEM25280>3.0.CO;2-9. PubMed DOI
Wang Y.-H., Zhang H.-M., Liu L., Liang Z.-X., Guo Q.-X., Tung C.-H., Inoue Y., Liu Y.-C. Photoinduced Electron Transfer in a Supramolecular Species Building of Mono-6-p-Nitrobenzoyl-β-Cyclodextrin with Naphthalene Derivatives. J. Org. Chem. 2002;67:2429–2434. doi: 10.1021/jo0108008. PubMed DOI
Chan W.-K., Yu W.-Y., Che C.-M., Wong M.-K. A Cyclodextrin-Modified Ketoester for Stereoselective Epoxidation of Alkenes. J. Org. Chem. 2003;68:6576–6582. doi: 10.1021/jo034296d. PubMed DOI
Kurochkina G.I., Kudryavtseva N.A., Grachev M.K., Lysenko S.A., Nifant’ev E.E. Investigation of Acylation of β-Cyclodextrin and Its Silyl Derivative with Benzoyl and Acetylsalicyloyl Chlorides. Russ. J. Gen. Chem. 2007;77:450–457. doi: 10.1134/S107036320703019X. DOI
Tang Y., Li C. Preparation of Novel Amphiphilic Copolymer Microspheres and Their Drug-Release and Glucose-Sensitive Properties. J. Appl. Polym. Sci. 2008;107:3848–3852. doi: 10.1002/app.27211. DOI
Ma P., Sun J., Huang Q., Wang J., Wang Z. β-Cyclodextrin Conjugates for the Intestinal Delivery of p-Aminobenzoic Acid: Synthesis, and in Vitro Assessment. J. Inclusion Phenom. Macrocyclic Chem. 2015;83:199–202. doi: 10.1007/s10847-015-0545-4. DOI
Ueno A., Suzuki I., Osa T. Association Dimers, Excimers, and Inclusion Complexes of Pyrene-Appended γ-Cyclodextrins. J. Am. Chem. Soc. 1989;111:6391–6397. doi: 10.1021/ja00198a061. DOI
Hoshino T., Miyauchi M., Kawaguchi Y., Yamaguchi H., Harada A. Daisy Chain Necklace: Tri[2]Rotaxane Containing Cyclodextrins. J. Am. Chem. Soc. 2000;122:9876–9877. doi: 10.1021/ja0018264. DOI
Yang C., Mori T., Wada T., Inoue Y. Supramolecular Enantiodifferentiating Photoisomerization of (Z,Z)-1,3-Cyclooctadiene Included and Sensitized by Naphthalene-Modified Cyclodextrins. New J. Chem. 2007;31:697–702. doi: 10.1039/b615353d. DOI
El-Kamel A.H., Abdel-Aziz A.A.-M., Fatani A.J., El-Subbagh H.I. Oral Colon Targeted Delivery Systems for Treatment of Inflammatory Bowel Diseases: Synthesis, in Vitro and in Vivo Assessment. Int. J. Pharm. 2008;358:248–255. doi: 10.1016/j.ijpharm.2008.04.021. PubMed DOI
Miyauchi M., Hoshino T., Yamaguchi H., Kamitori S., Harada A. A [2]Rotaxane Capped by a Cyclodextrin and a Guest: Formation of Supramolecular [2]Rotaxane Polymer. J. Am. Chem. Soc. 2005;127:2034–2035. doi: 10.1021/ja042840+. PubMed DOI
Sakuraba H., Maekawa H. Enantioselective Oxidation of Sulfides Catalyzed by Chiral MoV and CuII Complexes of Catechol-Appended β-Cyclodextrin Derivatives in Water. J. Inclusion Phenom. Macrocyclic Chem. 2006;54:41–45. doi: 10.1007/s10847-005-3490-9. DOI
Barr L., Lincoln S.F., Easton C.J. Reversal of Regioselectivity and Enhancement of Rates of Nitrile Oxide Cycloadditions through Transient Attachment of Dipolarophiles to Cyclodextrins. Chem. Eur. J. 2006;12:8571–8580. doi: 10.1002/chem.200600627. PubMed DOI
Inoue Y., Miyauchi M., Nakajima H., Takashima Y., Yamaguchi H., Harada A. Self-Threading of a Poly(Ethylene Glycol) Chain in a Cyclodextrin-Ring: Control of the Exchange Dynamics by Chain Length. J. Am. Chem. Soc. 2006;128:8994–8995. doi: 10.1021/ja061095t. PubMed DOI
Gao C., Ma X., Zhang Q., Wang Q., Qu D., Tian H. A Light-Powered Stretch–Contraction Supramolecular System Based on Cobalt Coordinated [1]Rotaxane. Org. Biomol. Chem. 2011;9:1126–1132. doi: 10.1039/C0OB00764A. PubMed DOI
Maeda K., Mochizuki H., Osato K., Yashima E. Stimuli-Responsive Helical Poly(Phenylacetylene)s Bearing Cyclodextrin Pendants That Exhibit Enantioselective Gelation in Response to Chirality of a Chiral Amine and Hierarchical Super-Structured Helix Formation. Macromolecules. 2011;44:3217–3226. doi: 10.1021/ma200537p. DOI
Pedotti S., Pistarà V., Cannavà C., Carbone C., Cilurzo F., Corsaro A., Puglisi G., Ventura C.A. Synthesis and Physico-Chemical Characterization of a β-Cyclodextrin Conjugate for Sustained Release of Acyclovir. Carbohydr. Polym. 2015;131:159–167. doi: 10.1016/j.carbpol.2015.05.071. PubMed DOI
Ueno A., Moriwaki F., Osa T., Hamada F., Murai K. Unique Binding Behavior of γ-Cyclodextrin Bearing a Ferrocene Moiety. Chem. Pharm. Bull. 1986;34:438–441. doi: 10.1248/cpb.34.438. DOI
Ueno A., Moriwaki F., Osa T., Hamada F., Murai K. Association, Photodimerization, and Induced-Fit Types of Host-Guest Complexation of Anthracene-Appended γ-Cyclodextrin Derivatives. J. Am. Chem. Soc. 1988;110:4323–4328. doi: 10.1021/ja00221a036. DOI
Jiao P., Wang S., Liang S., Li M., Gao Q., Ji D., Chen Y., Li H., Ran F., Zhang Y., et al. Facile Preparation and Characterization of Novel Oleanane-Type Triterpene Functionalized β-Cyclodextrin Conjugates. Chin. Chem. Lett. 2019;30:690–693. doi: 10.1016/j.cclet.2018.10.009. DOI
Shipilov D.A., Kurochkina G.I., Rasadkina E.N., Vasyanina L.K., Soboleva N.O., Grachev M.K. Direct Esterification of the Hydroxyl Groups of β-Cyclodextrin with Some Aromatic Monocarboxylic Acids. Russ. J. Gen. Chem. 2015;85:2605–2608. doi: 10.1134/S107036321511016X. DOI
Nielsen A.L., Steffensen K., Wimmer R., Worm-Leonhard M., Larsen K.L. Syntheses and Characterisation of Novel Cyclodextrin Vinyl Derivatives from Cyclodextrin-Nitrophenol-Derivatives. J. Inclusion Phenom. Macrocyclic Chem. 2010;67:303–315. doi: 10.1007/s10847-009-9711-x. DOI
Martina K., Puntambekar D.S., Barge A., Gallarate M., Chirio D., Cravotto G. Synthesis, Characterization and Potential Application of Monoacyl-Cyclodextrins. Carbohydr. Res. 2010;345:191–198. doi: 10.1016/j.carres.2009.11.009. PubMed DOI
Reetz M.T., Rudolph J. Synthesis of a Phosphine-Modified Cyclodextrin and Its Rhodium Complex. Tetrahedron Asymmetry. 1993;4:2405–2406. doi: 10.1016/S0957-4166(00)82210-7. DOI
Peroche S., Parrot-Lopez H. Novel Fluorinated Amphiphilic Cyclodextrin Derivatives: Synthesis of Mono-, Di- and Heptakis-(6-Deoxy-6-Perfluoroalkylthio)-β-Cyclodextrins. Tetrahedron Lett. 2003;44:241–245. doi: 10.1016/S0040-4039(02)02539-X. DOI
Milović N.M., Badjić J.D., Kostić N.M. Conjugate of Palladium(II) Complex and β-Cyclodextrin Acts as a Biomimetic Peptidase. J. Am. Chem. Soc. 2004;126:696–697. doi: 10.1021/ja038404p. PubMed DOI
Steffen A., Thiele C., Tietze S., Strassnig C., Kämper A., Lengauer T., Wenz G., Apostolakis J. Improved Cyclodextrin-Based Receptors for Camptothecin by Inverse Virtual Screening. Chem. Eur. J. 2007;13:6801–6809. doi: 10.1002/chem.200700661. PubMed DOI
Yuan D.-Q., Kitagawa Y., Fukudome M., Fujita K. A Vector-Selective Reaction Enables Efficient Construction of Specific Topology upon the Primary Side of β-Cyclodextrin. Org. Lett. 2007;9:4591–4594. doi: 10.1021/ol702098m. PubMed DOI
Lanza V., Vecchio G. New Conjugates of Superoxide Dismutase/Catalase Mimetics with Cyclodextrins. J. Inorg. Biochem. 2009;103:381–388. doi: 10.1016/j.jinorgbio.2008.11.017. PubMed DOI
Li W.-J., Fan Z., Diao C.-H., Wang M. The Binding Behavior of a Helical Column Supramolecule Formed by 6-Deoxy-6-(2-Pyrimidinethio)-β-Cyclodextrin in Both Solution and the Solid State. Carbohydr. Res. 2012;349:103–107. doi: 10.1016/j.carres.2011.11.018. PubMed DOI
Boonleang J., Stobaugh J.F. New Single Isomer Negatively Charged β-Cyclodextrin Derivatives as Chiral Selectors in Capillary Electrophoresis: CE and CEC. Electrophoresis. 2013;34:1232–1240. doi: 10.1002/elps.201200591. PubMed DOI
Lampropoulou M., Misiakos K., Paravatou M., Mavridis I.M., Yannakopoulou K. Synthesis of Cyclodextrin Derivatives with Monosaccharides and Their Binding with Ampicillin and Selected Lectins. Arkivoc. 2015:232–243. doi: 10.3998/ark.5550190.p009.003. DOI
Bednářová E., Hybelbauerová S., Jindřich J. Optimized Methods for Preparation of 6I-(ω-Sulfanyl-Alkylene-Sulfanyl)-β-Cyclodextrin Derivatives. Beilstein J. Org. Chem. 2016;12:349–352. doi: 10.3762/bjoc.12.38. PubMed DOI PMC
Ikeda H., Nishikawa S., Yamamoto Y., Ueno A. Homotropic Cooperativity of Cyclodextrin Dimer as an Artificial Hydrolase. J. Mol. Catal. A Chem. 2010;328:1–7. doi: 10.1016/j.molcata.2010.06.005. DOI
Rezac M., Breslow R. A Mutase Mimic with Cobalamin Linked to Cyclodextrin. Tetrahedron Lett. 1997;38:5763–5766. doi: 10.1016/S0040-4039(97)01289-6. DOI
Zhang B., Breslow R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997;119:1676–1681. doi: 10.1021/ja963769d. DOI
Zhang Y.-M., Chen Y., Zhuang R.-J., Liu Y. Construction and Radical Cation Stabilisation of a Supramolecular Dyad by Tetrathiafulvalene-Modified β-Cyclodextrin and Cucurbit[7]Uril. Supramol. Chem. 2011;23:372–378. doi: 10.1080/10610278.2010.521828. DOI
Zhang Y.-M., Chen Y., Zhuang R.-J., Liu Y. Supramolecular Architecture of Tetrathiafulvalene-Bridged Bis(β-Cyclodextrin) with Porphyrin and Its Electron Transfer Behaviors. Photochem. Photobiol. Sci. 2011;10:1393–1398. doi: 10.1039/C0PP00224K. PubMed DOI
Fujita K., Ueda T., Imoto T., Tabushi I., Toh N., Koga T. Guest-Induced Conformational Change of β-Cyclodextrin Capped with an Environmentally Sensitive Chromophore. Bioorg. Chem. 1982;11:72–84. doi: 10.1016/0045-2068(82)90049-9. DOI
Choi J.M., Cho E., Lee B., Jeong D., Choi Y., Yu J.-H., Jung S. Enhancing Bio-Availability of β-Naphthoflavone by Supramolecular Complexation with 6,6′-Thiobis(Methylene)-β-Cyclodextrin Dimer. Carbohydr. Polym. 2016;151:40–50. doi: 10.1016/j.carbpol.2016.05.046. PubMed DOI
Cottaz S., Driguez H. A Convenient Synthesis of S-(α-D- and S-(β-D)-Glucopyranosyl-6-Thiomaltodextrins. Synthesis. 1989;1989:755–758. doi: 10.1055/s-1989-27384. DOI
Sallas F., Leroy P., Marsura A., Nicolas A. First Selective Synthesis of Thio-β-Cyclodextrin Derivatives by a Direct Mitsunobu Reaction on Free β-Cyclodextrin. Tetrahedron Lett. 1994;35:6079–6082. doi: 10.1016/0040-4039(94)88080-8. DOI
Jicsinszky L., Caporaso M., Tuza K., Martina K., Calcio Gaudino E., Cravotto G. Nucleophilic Substitutions of 6I-OMonotosyl-β-Cyclodextrin in a Planetary Ball Mill. ACS Sustainable Chem. Eng. 2016;4:919–929. doi: 10.1021/acssuschemeng.5b01006. DOI
Samal S., Geckeler K.E. The First Synthesis of Water-Soluble Cyclodextrinazafullerenes. Synth. Commun. 2002;32:3367–3372. doi: 10.1081/SCC-120014045. DOI
Quan C.-Y., Chen J.-X., Wang H.-Y., Li C., Chang C., Zhang X.-Z., Zhuo R.-X. Core−Shell Nanosized Assemblies Mediated by the A−β Cyclodextrin Dimer with a Tumor-Triggered Targeting Property. ACS Nano. 2010;4:4211–4219. doi: 10.1021/nn100534q. PubMed DOI
Hein C.D., Liu X.-M., Chen F., Cullen D.M., Wang D. The Synthesis of a Multiblock Osteotropic Polyrotaxane by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Macromol. Biosci. 2010;10:1544–1556. doi: 10.1002/mabi.201000205. PubMed DOI
Seo J.-H., Kakinoki S., Inoue Y., Yamaoka T., Ishihara K., Yui N. Inducing Rapid Cellular Response on RGD-Binding Threaded Macromolecular Surfaces. J. Am. Chem. Soc. 2013;135:5513–5516. doi: 10.1021/ja400817q. PubMed DOI
Bonnet V., Duval R., Tran V., Rabiller C. Mono-N-Glycosidation of β-Cyclodextrin− Synthesis of 6-(β-Cyclodextrinyl-amino)-6-Deoxy-D-Galactosides and of N-(6-Deoxy-β-Cyclodextrinyl)-Galacto-Azepane. Eur. J. Org. Chem. 2003;2003:4810–4818. doi: 10.1002/ejoc.200300449. DOI
Liu X.-M., Lee H.-T., Reinhardt R.A., Marky L.A., Wang D. Novel Biomineral-Binding Cyclodextrins for Controlled Drug Delivery in the Oral Cavity. J. Control. Release. 2007;122:54–62. doi: 10.1016/j.jconrel.2007.06.021. PubMed DOI
Lai H., Zhao T., Deng Y., Fan C., Wu W., Yang C. Assembly-Enhanced Triplet-Triplet Annihilation Upconversion in the Aggregation Formed by Schiff-Base Pt(II) Complex Grafting-Permethyl-β-CD and 9, 10-Diphenylanthracence Dimer. Chin. Chem. Lett. 2019;30:1979–1983. doi: 10.1016/j.cclet.2019.09.009. DOI
Uchida W., Yoshikawa M., Seki T., Miki R., Seki T., Fujihara T., Ishimaru Y., Egawa Y. A Polyrotaxane Gel Using Boronic Acid-Appended γ-Cyclodextrin as a Hybrid Cross-Linker. J. Inclusion Phenom. Macrocyclic Chem. 2017;89:281–288. doi: 10.1007/s10847-017-0755-z. DOI
Nielsen T.T., Wintgens V., Amiel C., Wimmer R., Larsen K.L. Facile Synthesis of β-Cyclodextrin-Dextran Polymers by “Click” Chemistry. Biomacromolecules. 2010;11:1710–1715. doi: 10.1021/bm9013233. PubMed DOI
Yang F., Zhang Y., Guo H. Novel Supramolecular Liquid Crystals: Cyclodextrin-Triphenylene Column Liquid Crystals Based on Click Chemistry. New J. Chem. 2013;37:2275–2279. doi: 10.1039/c3nj00474k. DOI
Xu W., Liang W., Wu W., Fan C., Rao M., Su D., Zhong Z., Yang C. Supramolecular Assembly-Improved Triplet-Triplet Annihilation Upconversion in Aqueous Solution. Chem. Eur. J. 2018;24:16677–16685. doi: 10.1002/chem.201804001. PubMed DOI
Hanessian S., Benalil A., Laferriere C. The Synthesis of Functionalized Cyclodextrins As Scaffolds and Templates for Molecular Diversity, Catalysis, and Inclusion Phenomena. J. Org. Chem. 1995;60:4786–4797. doi: 10.1021/jo00120a023. DOI
Parrot-Lopez H., Djedaïni F., Perly B., Coleman A.W., Galons H., Miocque M. An Approach to Vectorisation of Pharmacologically Active Molecules: The Covalent Binding of Leu-Enkephalin to a Modified β- Cyclodextrin. Tetrahedron Lett. 1990;31:1999–2002. doi: 10.1016/S0040-4039(00)88899-1. DOI
Strickland A.D., Batt C.A. Detection of Carbendazim by Surface-Enhanced Raman Scattering Using Cyclodextrin Inclusion Complexes on Gold Nanorods. Anal. Chem. 2009;81:2895–2903. doi: 10.1021/ac801626x. PubMed DOI
Xin P., Kong H., Sun Y., Zhao L., Fang H., Zhu H., Jiang T., Guo J., Zhang Q., Dong W., et al. Artificial K + Channels Formed by Pillararene-Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew. Chem. Int. Ed. 2019;58:2779–2784. doi: 10.1002/anie.201813797. PubMed DOI
Bauer M., Bernhardt M., Charitat T., Kékicheff P., Fajolles C., Fragneto G., Marques C.M., Daillant J. Membrane Insertion of Sliding Anchored Polymers. Soft Matter. 2013;9:1700–1710. doi: 10.1039/C2SM26972D. DOI
Gonsior N., Ritter H. UCST Behavior of Cyclodextrin-Containing Poly(Pseudo-Betaines) Based on Supramolecular Structures. Macromol. Chem. Phys. 2012;213:382–388. doi: 10.1002/macp.201100336. DOI
Zhang Y.-M., Chen H.-Z., Chen Y., Ding F., Liu Y. Molecular Binding Behaviors of Triazole-Bridged Bis(β-Cyclodextrin)s towards Cinchona Alkaloids. New J. Chem. 2013;37:1554–1560. doi: 10.1039/c3nj00193h. DOI
Mori T., Inoue Y., Liu Y., Ke C., Yang C., Yang Z., Wu W. Synthesis of Functionalized β-Cyclodextrins by “Click Chemistry”. Heterocycles. 2008;76:155–160. doi: 10.3987/COM-08-S(N)16. DOI
Mourer M., Hapiot F., Monflier E., Menuel S. Click Chemistry as an Efficient Tool to Access β-Cyclodextrin Dimers. Tetrahedron. 2008;64:7159–7163. doi: 10.1016/j.tet.2008.05.095. DOI
Diallo A.K., Menuel S., Monflier E., Ruiz J., Astruc D. ‘Click’ Synthesis of Ferrocenyl-, Biferrocenyl-, and Cobalticenyl-Triazolyl-β-Cyclodextrins. Tetrahedron Lett. 2010;51:4617–4619. doi: 10.1016/j.tetlet.2010.06.115. DOI
Watanabe S., Sato S., Ohtsuka K., Takenaka S. Electrochemical DNA Analysis with a Supramolecular Assembly of Naphthalene Diimide, Ferrocene, and β-Cyclodextrin. Anal. Chem. 2011;83:7290–7296. doi: 10.1021/ac200989c. PubMed DOI
Zhang G., Luan Y., Han X., Wang Y., Wen X., Ding C., Gao J. A Palladium Complex with Functionalized β-Cyclodextrin: A Promising Catalyst Featuring Recognition Abilities for Suzuki–Miyaura Coupling Reactions in Water. Green Chem. 2013;15:2081–2085. doi: 10.1039/c3gc40645h. DOI
Guo H., Yang F., Zhang Y., Di X. Facile Synthesis of Mono- and Polytopic β -Cyclodextrin Aromatic Aldehydes by Click Chemistry. Synth. Commun. 2015;45:338–347. doi: 10.1080/00397911.2014.963400. DOI
Sun T., Wang Q., Bi Y., Chen X., Liu L., Ruan C., Zhao Z., Jiang C. Supramolecular Amphiphiles Based on Cyclodextrin and Hydrophobic Drugs. J. Mater. Chem. B. 2017;5:2644–2654. doi: 10.1039/C6TB03272A. PubMed DOI
Cravotto G., Mendicuti F., Martina K., Tagliapietra S., Robaldo B., Barge A. A New Access to Homo- and Heterodimers of α-, β-, and γ-Cyclodextrin by a Microwave-Promoted Huisgen Cycloaddition. Synlett. 2008;2008:2642–2646. doi: 10.1055/s-0028-1083379. DOI
Legros V., Vanhaverbeke C., Souard F., Len C., Désiré J. β-Cyclodextrin-Glycerol Dimers: Synthesis and NMR Conformational Analysis: β-Cyclodextrin-Glycerol Dimers. Eur. J. Org. Chem. 2013;2013:2583–2590. doi: 10.1002/ejoc.201201716. DOI
Yan Q., Yuan J., Cai Z., Xin Y., Kang Y., Yin Y. Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. J. Am. Chem. Soc. 2010;132:9268–9270. doi: 10.1021/ja1027502. PubMed DOI
Cakir N., Hizal G., Becer C.R. Supramolecular Glycopolymers with Thermo-Responsive Self-Assembly and Lectin Binding. Polym. Chem. 2015;6:6623–6631. doi: 10.1039/C5PY00939A. DOI
Paolino M., Komber H., Mennuni L., Caselli G., Appelhans D., Voit B., Cappelli A. Supramolecular Glycodendrimer-Based Hybrid Drugs. Biomacromolecules. 2014;15:3985–3993. doi: 10.1021/bm501057d. PubMed DOI
Kim H.-Y., Sohn J., Wijewickrama G.T., Edirisinghe P., Gherezghiher T., Hemachandra M., Lu P.-Y., Chandrasena R.E., Molloy M.E., Tonetti D.A., et al. Click Synthesis of Estradiol–Cyclodextrin Conjugates as Cell Compartment Selective Estrogens. Bioorg. Med. Chem. 2010;18:809–821. doi: 10.1016/j.bmc.2009.11.046. PubMed DOI PMC
Tomanová P., Šturala J., Buděšínský M., Cibulka R. A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts. Molecules. 2015;20:19837–19848. doi: 10.3390/molecules201119667. PubMed DOI PMC
Shi W.-J., Menting R., Ermilov E.A., Lo P.-C., Röder B., Ng D.K.P. Formation and Photoinduced Processes of the Host–Guest Complexes of a β-Cyclodextrin-Conjugated Aza-BODIPY and Tetrasulfonated Porphyrins. Chem. Commun. 2013;49:5277–5279. doi: 10.1039/c3cc00095h. PubMed DOI
Chiba J., Sakai A., Yamada S., Fujimoto K., Inouye M. A Supramolecular DNA Self-Assembly Based on β-Cyclodextrin–Adamantane Complexation as a Bioorthogonal Sticky End Motif. Chem. Commun. 2013;49:6454–6456. doi: 10.1039/c3cc43109f. PubMed DOI
Legros V., Hamon F., Violeau B., Turpin F., Djedaini-Pilard F., Désiré J., Len C. Toward the Supramolecular Cyclodextrin Dimers Using Nucleobase Pairs. Synthesis. 2011:235–242. doi: 10.1055/s-0030-1258354. DOI
Bai Y., Fan X., Yao H., Yang Z., Liu T., Zhang H., Zhang W., Tian W. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host–Guest Recognition or Hydrophilic–Hydrophobic Interaction? J. Phys. Chem. B. 2015;119:11893–11899. doi: 10.1021/acs.jpcb.5b05317. PubMed DOI
Diget J.S., Städe L.W., Nielsen T.T. Direct Synthesis of Well-Defined Zwitterionic Cyclodextrin Polymers via Atom Transfer Radical Polymerization. Eur. Polym. J. 2019;116:84–90. doi: 10.1016/j.eurpolymj.2019.03.020. DOI
Cintas P., Barge A., Tagliapietra S., Boffa L., Cravotto G. Alkyne–Azide Click Reaction Catalyzed by Metallic Copper under Ultrasound. Nat. Protoc. 2010;5:607–616. doi: 10.1038/nprot.2010.1. PubMed DOI
Rinaldi L., Martina K., Baricco F., Rotolo L., Cravotto G. Solvent-Free Copper-Catalyzed Azide-Alkyne Cycloaddition under Mechanochemical Activation. Molecules. 2015;20:2837–2849. doi: 10.3390/molecules20022837. PubMed DOI PMC
Cintas P., Martina K., Robaldo B., Garella D., Boffa L., Cravotto G. Improved Protocols for Microwave-Assisted Cu(I)-Catalyzed Huisgen 1,3-Dipolar Cycloadditions. Collect. Czech. Chem. Commun. 2007;72:1014–1024. doi: 10.1135/cccc20071014. DOI
Megia-Fernandez A., Ortega-Muñoz M., Lopez-Jaramillo J., Hernandez-Mateo F., Santoyo-Gonzalez F. Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Adv. Synth. Catal. 2010;352:3306–3320. doi: 10.1002/adsc.201000530. DOI
Liu Y., Yang Z.-X., Chen Y. Syntheses and Self-Assembly Behaviors of the Azobenzenyl Modified β-Cyclodextrins Isomers. J. Org. Chem. 2008;73:5298–5304. doi: 10.1021/jo800488f. PubMed DOI
Munteanu M., Choi S., Ritter H. Cyclodextrin Methacrylate via Microwave-Assisted Click Reaction. Macromolecules. 2008;41:9619–9623. doi: 10.1021/ma8018975. DOI
Yuan D.-Q., Yang C., Fukuda T., Fujita K. An Efficient Strategy for the Modification of α-Cyclodextrin: Direct Conversion of One or Two Adjacent 6-OHs to Phthalimides. Tetrahedron Lett. 2003;44:565–568. doi: 10.1016/S0040-4039(02)02503-0. DOI
Tang W., Muderawan I.W., Ong T.-T., Ng S.-C. Facile Synthesis of Positively Charged Monosubstituted α- and γ-Cyclodextrins for Chiral Resolution of Anionic Racemates. Tetrahedron Asymmetry. 2007;18:1548–1553. doi: 10.1016/j.tetasy.2007.06.017. DOI
Reddy L.R., Reddy M.A., Bhanumathi N., Rao K.R. An Efficient Protocol for the Reduction of Azidocyclodextrins Catalyzed by Indium. Indian J. Chem. Sect. B. 2002;41B:645–646.
Onagi H., Easton C.J., Lincoln S.F. An Hermaphrodite [2]Rotaxane: Preparation and Analysis of Structure. Org. Lett. 2001;3:1041–1044. doi: 10.1021/ol015607e. PubMed DOI
Popr M., Filippov S.K., Matushkin N., Dian J., Jindřich J. Properties of Cationic Monosubstituted Tetraalkylammonium Cyclodextrin Derivatives – Their Stability, Complexation Ability in Solution or When Deposited on Solid Anionic Surface. Beilstein J. Org. Chem. 2015;11:192–199. doi: 10.3762/bjoc.11.20. PubMed DOI PMC
Puglisi A., Spencer J., Clarke J., Milton J. Microwave-Assisted Synthesis of 6-Amino-β-Cyclodextrins. J. Inclusion Phenom. Macrocyclic Chem. 2012;73:475–478. doi: 10.1007/s10847-011-0054-z. DOI
Liu P., He W., Qin X.-Y., Sun X.-L., Chen H., Zhang S.-Y. Synthesis and Application of a Novel Single-Isomer Mono-6-Deoxy-6-((2S,3S)-(+)-2,3-O-Isopropylidene-1,4-Tetramethylenediamine)-β-Cyclodextrin as Chiral Selector in Capillary Electrophoresis. Chirality. 2010;22:914–921. doi: 10.1002/chir.20859. PubMed DOI
Liu Y., Han B.-H., Sun S.-X., Wada T., Inoue Y. Molecular Recognition Study on Supramolecular Systems. 20. Molecular Recognition and Enantioselectivity of Aliphatic Alcohols by l-Tryptophan-Modified β-Cyclodextrin. J. Org. Chem. 1999;64:1487–1493. doi: 10.1021/jo981891k. PubMed DOI
Ueno A., Moriwaki F., Osa T., Hamada F., Murai K. Excimer Formation in Inclusion Complexes of Modified Cyclodextrins. Tetrahedron. 1987;43:1571–1578. doi: 10.1016/S0040-4020(01)90271-6. DOI
Lo Meo P., D’Anna F., Riela S., Gruttadauria M., Noto R. Spectrophotometric Determination of Binding Constants between Some Aminocyclodextrins and Nitrobenzene Derivatives at Various pH Values. Tetrahedron. 2002;58:6039–6045. doi: 10.1016/S0040-4020(02)00579-3. DOI
Kikuchi T., Narita M., Hamada F. Synthesis of Bis Dansyl-Modified β-Cyclodextrin Liner Trimer Having Multi-Recognition Sites and High Hydrophobic Environment. Tetrahedron. 2001;57:9317–9324. doi: 10.1016/S0040-4020(01)00935-8. DOI
Deng W., Yamaguchi H., Takashima Y., Harada A. Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins. Chem. Asian J. 2008;3:687–695. doi: 10.1002/asia.200700378. PubMed DOI
Prashar D., Cui D., Bandyopadhyay D., Luk Y.-Y. Modification of Proteins with Cyclodextrins Prevents Aggregation and Surface Adsorption and Increases Thermal Stability. Langmuir. 2011;27:13091–13096. doi: 10.1021/la203271u. PubMed DOI
Yoon J., Hong S., Martin K.A., Czarnik A.W. A General Method for the Synthesis of Cyclodextrinyl Aldehydes and Carboxylic Acids. J. Org. Chem. 1995;60:2792–2795. doi: 10.1021/jo00114a030. DOI
Sallas F., Marsura A., Petot V., Pintér I., Kovács J., Jicsinszky L. Synthesis and Study of New β-Cyclodextrin ‘Dimers’ Having a Metal Coordination Center and Carboxamide or Urea Linkers. Helv. Chim. Acta. 1998;81:632–645. doi: 10.1002/hlca.19980810314. DOI
Nakamura A., Inoue Y. Electrostatic Manipulation of Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate within γ-Cyclodextrin Cavity through Chemical Modification. Inverted Product Distribution and Enhanced Enantioselectivity. J. Am. Chem. Soc. 2005;127:5338–5339. doi: 10.1021/ja050704e. PubMed DOI
De los Reyes-Berbel E., Ortiz-Gomez I., Ortega-Muñoz M., Salinas-Castillo A., Capitan-Vallvey L.F., Hernandez-Mateo F., Lopez-Jaramillo F.J., Santoyo-Gonzalez F. Carbon Dots-Inspired Fluorescent Cyclodextrins: Competitive Supramolecular “off–on” (Bio)Sensors. Nanoscale. 2020;12:9178–9185. doi: 10.1039/D0NR01004A. PubMed DOI
Suzuki I., Ui M., Yamauchi A. Supramolecular Probe for Bicarbonate Exhibiting Anomalous Pyrene Fluorescence in Aqueous Media. J. Am. Chem. Soc. 2006;128:4498–4499. doi: 10.1021/ja055772f. PubMed DOI
Rosenthal M.I., Czarnik A.W. Rapid Transacylations of Activated Ester Substrates Bound to the Primary Side β-Cyclodextrin-Cyclen Conjugate and Its M2+ Complexes. J. Inclusion Phenom. Mol. Recognit. Chem. 1991;10:119–126. doi: 10.1007/BF01041645. DOI
Rong D., Ye H., Boehlow T.R., D’Souza V.T. Artificial Redox Enzymes. 1. Synthetic Strategies. J. Org. Chem. 1992;57:163–167. doi: 10.1021/jo00027a031. DOI
Hamada F., Murai K., Ueno A., Suzuki I., Osa T. Excimer Formation and Intramolecular Self-Complexation of Double-Armed γ-Cyclodextrin. Bull. Chem. Soc. Jpn. 1988;61:3758–3760. doi: 10.1246/bcsj.61.3758. DOI
Hui T.-W., Cui J.-F., Wong M.-K. Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(iii)-Catalyzed Three-Component Coupling Reaction. RSC Adv. 2017;7:14477–14480. doi: 10.1039/C7RA00249A. DOI
Binkowski C., Hapiot F., Lequart V., Martin P., Monflier E. Evidence of a Self-Inclusion Phenomenon for a New Class of Mono-Substituted Alkylammonium-β-Cyclodextrins. Org. Biomol. Chem. 2005;3:1129–1133. doi: 10.1039/B416018E. PubMed DOI
Wang Q., Yang C., Ke C., Fukuhara G., Mori T., Liu Y., Inoue Y. Wavelength-Controlled Supramolecular Photocyclodimerization of Anthracenecarboxylate Mediated by γ-Cyclodextrins. Chem. Commun. 2011;47:6849–6851. doi: 10.1039/c1cc11771h. PubMed DOI
Wang L.-Y., Li F.-M., Huang Y., Mei M.-Y., Zhang Z.-X. Synthesis and Properties of Novel Hemicyanine Dye-β-Cyclodextrin. Chin. J. Chem. 2007;25:1192–1195. doi: 10.1002/cjoc.200790222. DOI
Huh K.M., Tomita H., Lee W.K., Ooya T., Yui N. Synthesis of α-Cyclodextrin-Conjugated Poly(ε-Lysine)s and Their Inclusion Complexation Behavior. Macromol. Rapid Commun. 2002;23:179–182. doi: 10.1002/1521-3927(20020201)23:3<179::AID-MARC179>3.0.CO;2-U. DOI
Martin K.A., Czarnik A.W. Facile Preparation of the β-Cyclodextrinyl Aldehyde. Tetrahedron Lett. 1994;35:6781–6782. doi: 10.1016/0040-4039(94)85003-8. DOI
Nace H., Monagle J. Notes: Reactions of Sulfoxides with Organic Halides. Preparation of Aldehydes and Ketones. J. Org. Chem. 1959;24:1792–1793. doi: 10.1021/jo01093a608. DOI
Bertolla C., Rolin S., Evrard B., Pochet L., Masereel B. Synthesis and Pharmacological Evaluation of a New Targeted Drug Carrier System: β-Cyclodextrin Coupled to Oxytocin. Bioorg. Med. Chem. Lett. 2008;18:1855–1858. doi: 10.1016/j.bmcl.2008.02.017. PubMed DOI
Swamy J.N., Winter R.E.K., Jeffreys C.R., D’Souza V.T. Synthetic Methodology for Cyclodextrin–Dipyrromethane Conjugates. Tetrahedron Lett. 2004;45:7595–7597. doi: 10.1016/j.tetlet.2004.08.121. DOI
Deunf E., Buriez O., Labbé E., Verpeaux J.-N., Amatore C. Design and Electrochemical Characterization of a New Cobalt(II)–Cyclodextrin Complex. Evidence for a Supramolecular Stabilization of the Co(I) State. Electrochem. Commun. 2009;11:114–117. doi: 10.1016/j.elecom.2008.10.044. DOI
Liu Y., Chen Y., Li L., Huang G., You C.-C., Zhang H.-Y., Wada T., Inoue Y. Cooperative Multiple Recognition by Novel Calix[4]Arene-Tethered β-Cyclodextrin and Calix[4]Arene-Bridged Bis(β-Cyclodextrin) J. Org. Chem. 2001;66:7209–7215. doi: 10.1021/jo015673u. PubMed DOI
Malenkovskaya M.A., Shipilov D.A., Vasyanina L.K., Grachev M.K. Synthesis of 6-Monoaldehyde of β-Cyclodextrin and Imino Derivatives on Its Basis. Russ. J. Gen. Chem. 2016;86:2725–2727. doi: 10.1134/S1070363216120306. DOI
Miyauchi M., Harada A. Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests. J. Am. Chem. Soc. 2004;126:11418–11419. doi: 10.1021/ja046562q. PubMed DOI
Leray E., Parrot-Lopez H., Augé C., Coleman A.W., Finance C., Bonaly R. Chemical–Enzymatic Synthesis and Bioactivity of Mono-6-[Gal-β-1,4-GlcNAc-β-(1,6′)-Hexyl]Amido-6-Deoxy-Cycloheptaamylose. J. Chem. Soc. Chem. Commun. 1995:1019–1020. doi: 10.1039/C39950001019. DOI
Harada A., Kobayashi R., Takashima Y., Hashidzume A., Yamaguchi H. Macroscopic Self-Assembly through Molecular Recognition. Nature. Chem. 2011;3:34–37. doi: 10.1038/nchem.893. PubMed DOI
Meyer A.G., Easton C.J., Lincoln S.F., Simpson G.W. β-Cyclodextrin as a Scaffold for Supramolecular Chemistry, To Reverse the Regioselectivity of Nitrile Oxide Cycloadditions. J. Org. Chem. 1998;63:9069–9075. doi: 10.1021/jo9817321. DOI
Surpateanu G.G., Landy D., Lungu C.N., Fourmentin S., Surpateanu G., Réthoré C., Avarvari N. Synthesis and Inclusion Capability of a β-Cyclodextrin-Tetrathiafulvalene Derivative. Tetrahedron. 2006;62:9701–9704. doi: 10.1016/j.tet.2006.07.088. DOI
Maeda K., Mochizuki H., Watanabe M., Yashima E. Switching of Macromolecular Helicity of Optically Active Poly(Phenylacetylene)s Bearing Cyclodextrin Pendants Induced by Various External Stimuli. J. Am. Chem. Soc. 2006;128:7639–7650. doi: 10.1021/ja060858+. PubMed DOI
Becuwe M., Delattre F., Surpateanu G.G., Cazier F., Woisel P., Garçon G., Shirali P., Surpateanu G. Synthesis of New Fluorescent β-Cyclodextrin Sensor. Heterocycl. Commun. 2005;11:355–360. doi: 10.1515/HC.2005.11.3-4.355. DOI
Takahashi H., Takashima Y., Yamaguchi H., Harada A. Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrin−β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimers. J. Org. Chem. 2006;71:4878–4883. doi: 10.1021/jo0604686. PubMed DOI
Tsumoto H., Kawahara S., Fujisawa Y., Suzuki T., Nakagawa H., Kohda K., Miyata N. Syntheses of Water-Soluble [60]Fullerene Derivatives and Their Enhancing Effect on Neurite Outgrowth in NGF-Treated PC12 Cells. Bioorg. Med. Chem. Lett. 2010;20:1948–1952. doi: 10.1016/j.bmcl.2010.01.142. PubMed DOI
Yan J., Zhang X., Zhang X., Liu K., Li W., Wu P., Zhang A. Thermoresponsive Supramolecular Dendrimers via Host-Guest Interactions. Macromol. Chem. Phys. 2012;213:2003–2010. doi: 10.1002/macp.201200320. DOI
Onagi H., Blake C.J., Easton C.J., Lincoln S.F. Installation of a Ratchet Tooth and Pawl to Restrict Rotation in a Cyclodextrin Rotaxane. Chem. Eur. J. 2003;9:5978–5988. doi: 10.1002/chem.200305280. PubMed DOI
Yan J.-M., Atsumi M., Yuan D.-Q., Fujita K. (Ethylenediaminetetraacetic Acid)Cerium(IV) [CeIV(EDTA)] Complexes with Dual Hydrophobic Binding Sites as Highly Efficient Catalysts for the Hydrolysis of Phosphodiesters. Helv. Chim. Acta. 2002;85:1496–1504. doi: 10.1002/1522-2675(200205)85:5<1496::AID-HLCA1496>3.0.CO;2-2. DOI
Wyness O., May B.L., Clements P., Lincoln S.F., Easton C.J. Diazacoronand-Linked α- and β-Cyclodextrin Dimer Complexes of the Brilliant Yellow Tetraanion. Aust. J. Chem. 2004;57:571–576. doi: 10.1071/CH03268. PubMed DOI
Zhao L.-J., Yang S.-L., Jin W., Yang H.-W., Li F.-Y., Chi S.-M., Zhu H.-Y., Lei Z., Zhao Y. Host-Guest Inclusion Systems of Morin Hydrate and Quercetin with Two Bis(β-Cyclodextrin)s: Preparation, Characterization, and Antioxidant Activity. Aust. J. Chem. 2019;72:440–449. doi: 10.1071/CH18580. DOI
Mallard I., Landy D., Bouchemal N., Fourmentin S. Synthesis and Inclusion Ability of Anthracene Appended β-Cyclodextrins: Unexpected Effect of Triazole Linker. Carbohydr. Res. 2011;346:35–42. doi: 10.1016/j.carres.2010.09.031. PubMed DOI
Malanga M., Darcsi A., Balint M., Benkovics G., Sohajda T., Beni S. New Synthetic Strategies for Xanthene-Dye-Appended Cyclodextrins. Beilstein J. Org. Chem. 2016;12:537–548. doi: 10.3762/bjoc.12.53. PubMed DOI PMC
Coulston R.J., Onagi H., Lincoln S.F., Easton C.J. Harnessing the Energy of Molecular Recognition in a Nanomachine Having a Photochemical On/Off Switch. J. Am. Chem. Soc. 2006;128:14750–14751. doi: 10.1021/ja0651761. PubMed DOI
Benito J.M., Gómez-García M., Ortiz Mellet C., Baussanne I., Defaye J., García Fernández J.M. Optimizing Saccharide-Directed Molecular Delivery to Biological Receptors: Design, Synthesis, and Biological Evaluation of Glycodendrimer−Cyclodextrin Conjugates. J. Am. Chem. Soc. 2004;126:10355–10363. doi: 10.1021/ja047864v. PubMed DOI
Aime S., Gianolio E., Palmisano G., Robaldo B., Barge A., Boffa L., Cravotto G. Improved Syntheses of Bis(β-Cyclodextrin) Derivatives, New Carriers for Gadolinium Complexes. Org. Biomol. Cheml. 2006;4:1124–1130. doi: 10.1039/b517068k. PubMed DOI
Rivero-Barbarroja G., Benito J.M., Ortiz Mellet C., García Fernández J.M. Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials. 2020;10:2517. doi: 10.3390/nano10122517. PubMed DOI PMC
Cieslinski M.M., Clements P., May B.L., Easton C.J., Lincoln S.F. Complexation by α- and β-Cyclodextrin C(6) Linked Homo- and Hetero-Dimers of Brilliant Yellow Tetraanion: A Study of Host–Guest Size Relationships. J. Chem. Soc. Perkin Trans. 2002;2:947–952. doi: 10.1039/b200026c. DOI
Charbonnier F., Marsura A., Roussel K., Kovacs J., Pinter I. Studies on the Synthesis and Structure of New Urea-Linked Sugar Podando-Coronand Derivatives. Helv. Chim. Acta. 2001;84:535–551. doi: 10.1002/1522-2675(20010321)84:3<535::AID-HLCA535>3.0.CO;2-T. DOI
Ghera B.B., Fache F., Parrot-Lopez H. Use of the Olefin Metathesis Reaction for Highly Efficient β-Cyclodextrin Modification. Tetrahedron. 2006;62:4807–4813. doi: 10.1016/j.tet.2006.03.010. DOI
White R.J., Plieger P.G., Harding D.R.K. Synthesis of Bifunctional Peptide Derivatives Based on a β-Cyclodextrin Core with Drug Delivery Potential. Tetrahedron Lett. 2010;51:800–803. doi: 10.1016/j.tetlet.2009.11.118. DOI
Huang D., Zhang Y., Zhang H. A Novel Synthesis of Ethyl Carbonate Derivatives of β-Cyclodextrin. Carbohydr. Res. 2013;370:82–85. doi: 10.1016/j.carres.2013.01.022. PubMed DOI
Liu Y., You C.-C., Chen Y., Wada T., Inoue Y. Molecular Recognition Studies on Supramolecular Systems. 25. Inclusion Complexation by Organoselenium-Bridged Bis(β-Cyclodextrin)s and Their Platinum(IV) Complexes. J. Org. Chem. 1999;64:7781–7787. doi: 10.1021/jo990692d. DOI
Continuous flow synthesis of 6-monoamino-6-monodeoxy-β-cyclodextrin