Recommendations for good practice in MS-based lipidomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
P30 ES025128
NIEHS NIH HHS - United States
P 33298
Austrian Science Fund FWF - Austria
RF1 AG061872
NIA NIH HHS - United States
P42 ES031009
NIEHS NIH HHS - United States
RF1 AG061729
NIA NIH HHS - United States
P30 AG066546
NIA NIH HHS - United States
P42 ES027704
NIEHS NIH HHS - United States
PubMed
34662536
PubMed Central
PMC8585648
DOI
10.1016/j.jlr.2021.100138
PII: S0022-2275(21)00120-6
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS, MS, chromatography, ion mobility spectrometry, lipid identification, lipidomics, metabolomics, phospholipids, sphingolipids,
- MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- lipidomika * normy MeSH
- lipidy analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- lipidy MeSH
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Barshop Inst Longev and Aging Studies Univ Texas Hlth Sci Ctr San Antonio San Antonio TX USA
Center for Biotechnology Universität Bielefeld Bielefeld Germany
Core Facility Mass Spectrometry Medical University of Graz Graz Austria
Department for Analytical Chemistry University of Vienna Vienna Austria
Department of Chemistry North Carolina State University Raleigh NC USA
Zobrazit více v PubMed
Wenk M.R. Lipidomics: new tools and applications. Cell. 2010;143:888–895. PubMed
Holcapek M., Liebisch G., Ekroos K. Lipidomic analysis. Anal. Chem. 2018;90:4249–4257. PubMed
Han X., Gross R.W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. U. S. A. 1994;91:10635–10639. PubMed PMC
Brugger B., Erben G., Sandhoff R., Wieland F.T., Lehmann W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 1997;94:2339–2344. PubMed PMC
Han X., Gross R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 2003;44:1071–1079. PubMed
Spener F., Lagarde M., Géloên A., Record M. Editorial: what is lipidomics? Eur. J. Lipid Sci. Technol. 2003;105:481–482.
Han X., Gross R.W. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 2005;24:367–412. PubMed
Fauland A., Kofeler H., Trotzmuller M., Knopf A., Hartler J., Eberl A., Chitraju C., Lankmayr E., Spener F. A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J. Lipid Res. 2011;52:2314–2322. PubMed PMC
Lisa M., Cifkova E., Khalikova M., Ovcacikova M., Holcapek M. Lipidomic analysis of biological samples: comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J. Chromatogr. A. 2017;1525:96–108. PubMed
Liebisch G., Ahrends R., Arita M., Arita M., Bowden J.A., Ejsing C.S., Griffiths W.J., Holcapek M., Köfeler H.C., Mitchell T.W., Wenk M.R., Ekroos K. Lipidomics needs more standardization. Nat. Metab. 2019;1:745–747. PubMed
Worheide M.A., Krumsiek J., Kastenmuller G., Arnold M. Multi-omics integration in biomedical research - a metabolomics-centric review. Anal. Chim. Acta. 2021;1141:144–162. PubMed PMC
Liebisch G., Vizcaino J.A., Kofeler H., Trotzmuller M., Griffiths W.J., Schmitz G., Spener F., Wakelam M.J.O. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. PubMed PMC
Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., Fedorova M., Feussner I., Griffiths W.J., Kofeler H., Merrill A.H., Jr., Murphy R.C., O'Donnell V.B., Oskolkova O., Subramaniam S., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. PubMed PMC
Liebisch G., Drobnik W., Lieser B., Schmitz G. High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry. Clin. Chem. 2002;48:2217–2224. PubMed
Scherer M., Schmitz G., Liebisch G. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2009;55:1218–1222. PubMed
Kim J., Hoppel C.L. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013;912:105–114. PubMed PMC
Okudaira M., Inoue A., Shuto A., Nakanaga K., Kano K., Makide K., Saigusa D., Tomioka Y., Aoki J. Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS. J. Lipid Res. 2014;55:2178–2192. PubMed PMC
Kano K., Matsumoto H., Kono N., Kurano M., Yatomi Y., Aoki J. Suppressing postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA quantification. J. Lipid Res. 2021;62:100029. PubMed PMC
Ulmer C.Z., Koelmel J.P., Jones C.M., Garrett T.J., Aristizabal-Henao J.J., Vesper H.W., Bowden J.A. A review of efforts to improve lipid stability during sample preparation and standardization efforts to ensure accuracy in the reporting of lipid measurements. Lipids. 2021;56:3–16. PubMed PMC
Krautbauer S., Blazquez R., Liebisch G., Hoering M., Neubert P., Pukrop T., Burkhardt R., Sigruener A. Application of lipid class ratios for sample stability monitoring-evaluation of murine tissue homogenates and SDS as a stabilizer. Metabolites. 2021;11:277. PubMed PMC
Lebaron F.N., Folch J. The effect of pH and salt concentration on aqueous extraction of brain proteins and lipoproteins. J. Neurochem. 1959;4:1–8. PubMed
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. PubMed
Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. PubMed PMC
Triebl A., Trotzmuller M., Eberl A., Hanel P., Hartler J., Kofeler H.C. Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction liquid chromatography coupled to electrospray ionization high resolution mass spectrometry. J. Chromatogr. A. 2014;1347:104–110. PubMed PMC
Lofgren L., Stahlman M., Forsberg G.B., Saarinen S., Nilsson R., Hansson G.I. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 2012;53:1690–1700. PubMed PMC
Zhao Z., Xu Y. An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J. Lipid Res. 2010;51:652–659. PubMed PMC
Höring M., Krautbauer S., Hiltl L., Babl V., Sigruener A., Burkhardt R., Liebisch G. Accurate lipid quantification of tissue homogenates requires suitable sample concentration, solvent composition, and homogenization procedure—a case study in murine liver. Metabolites. 2021;11:365. PubMed PMC
Burla B., Arita M., Arita M., Bendt A.K., Cazenave-Gassiot A., Dennis E.A., Ekroos K., Han X., Ikeda K., Liebisch G., Lin M.K., Loh T.P., Meikle P.J., Oresic M., Quehenberger O., et al. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018;59:2001–2017. PubMed PMC
Reis A., Rudnitskaya A., Blackburn G.J., Mohd Fauzi N., Pitt A.R., Spickett C.M. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 2013;54:1812–1824. PubMed PMC
Pati S., Nie B., Arnold R.D., Cummings B.S. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 2016;30:695–709. PubMed PMC
Fauland A., Trotzmuller M., Eberl A., Afiuni-Zadeh S., Kofeler H., Guo X., Lankmayr E. An improved SPE method for fractionation and identification of phospholipids. J. Sep. Sci. 2013;36:744–751. PubMed
Pernet F., Pelletier C.J., Milley J. Comparison of three solid-phase extraction methods for fatty acid analysis of lipid fractions in tissues of marine bivalves. J. Chromatogr. A. 2006;1137:127–137. PubMed
Bodennec J., Koul O., Aguado I., Brichon G., Zwingelstein G., Portoukalian J. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J. Lipid Res. 2000;41:1524–1531. PubMed
Wong C.H., Leung D.K., Tang F.P., Wong J.K., Yu N.H., Wan T.S. Rapid screening of anabolic steroids in horse urine with ultra-high-performance liquid chromatography/tandem mass spectrometry after chemical derivatisation. J. Chromatogr. A. 2012;1232:257–265. PubMed
Triebl A., Weissengruber S., Trotzmuller M., Lankmayr E., Kofeler H. Quantitative analysis of N-acylphosphatidylethanolamine molecular species in rat brain using solid-phase extraction combined with reversed-phase chromatography and tandem mass spectrometry. J. Sep. Sci. 2016;39:2474–2480. PubMed PMC
Narayanaswamy P., Shinde S., Sulc R., Kraut R., Staples G., Thiam C.H., Grimm R., Sellergren B., Torta F., Wenk M.R. Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal. Chem. 2014;86:3043–3047. PubMed
Hajek R., Jirasko R., Lisa M., Cifkova E., Holcapek M. Hydrophilic interaction liquid chromatography-mass spectrometry characterization of gangliosides in biological samples. Anal. Chem. 2017;89:12425–12432. PubMed
Griffiths W.J., Gilmore I., Yutuc E., Abdel-Khalik J., Crick P.J., Hearn T., Dickson A., Bigger B.W., Wu T.H., Goenka A., Ghosh A., Jones S.A., Wang Y. Identification of unusual oxysterols and bile acids with 7-oxo or 3beta,5alpha,6beta-trihydroxy functions in human plasma by charge-tagging mass spectrometry with multistage fragmentation. J. Lipid Res. 2018;59:1058–1070. PubMed PMC
Honda A., Yamashita K., Miyazaki H., Shirai M., Ikegami T., Xu G., Numazawa M., Hara T., Matsuzaki Y. Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J. Lipid Res. 2008;49:2063–2073. PubMed
Lee J.C., Byeon S.K., Moon M.H. Relative quantification of phospholipids based on isotope-labeled methylation by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry: enhancement in cardiolipin profiling. Anal. Chem. 2017;89:4969–4977. PubMed
Wang M., Wang C., Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-what, how and why? Mass Spectrom. Rev. 2017;36:693–714. PubMed PMC
Liebisch G., Drobnik W., Reil M., Trumbach B., Arnecke R., Olgemoller B., Roscher A., Schmitz G. Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS) J. Lipid Res. 1999;40:1539–1546. PubMed
Hsu F.F., Turk J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J. Am. Soc. Mass Spectrom. 2000;11:986–999. PubMed
Hsu F.F., Turk J. Charge-remote and charge-driven fragmentation processes in diacyl glycerophosphoethanolamine upon low-energy collisional activation: a mechanistic proposal. J. Am. Soc. Mass Spectrom. 2000;11:892–899. PubMed
Hsu F.F., Turk J. Charge-driven fragmentation processes in diacyl glycerophosphatidic acids upon low-energy collisional activation. A mechanistic proposal. J. Am. Soc. Mass Spectrom. 2000;11:797–803. PubMed
Hsu F.F., Turk J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J. Am. Soc. Mass Spectrom. 2003;14:352–363. PubMed
Hsu F.F., Turk J. Characterization of phosphatidylethanolamine as a lithiated adduct by triple quadrupole tandem mass spectrometry with electrospray ionization. J. Mass Spectrom. 2000;35:595–606. PubMed
Hsu F.F., Turk J. Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2000;11:437–449. PubMed
Hsu F.F., Turk J. Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 2001;12:61–79. PubMed
Hsu F.F., Turk J. Characterization of ceramides by low energy collisional-activated dissociation tandem mass spectrometry with negative-ion electrospray ionization. J. Am. Soc. Mass Spectrom. 2002;13:558–570. PubMed
Hsu F.F., Turk J., Stewart M.E., Downing D.T. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2002;13:680–695. PubMed
Han X., Yang K., Gross R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 2012;31:134–178. PubMed PMC
Horing M., Ejsing C.S., Hermansson M., Liebisch G. Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution Fourier transform mass spectrometry utilizing species-specific response factors. Anal. Chem. 2019;91:3459–3466. PubMed
Almeida R., Pauling J.K., Sokol E., Hannibal-Bach H.K., Ejsing C.S. Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2015;26:133–148. PubMed
Schuhmann K., Almeida R., Baumert M., Herzog R., Bornstein S.R., Shevchenko A. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 2012;47:96–104. PubMed
Linden D., William-Olsson L., Ahnmark A., Ekroos K., Hallberg C., Sjogren H.P., Becker B., Svensson L., Clapham J.C., Oscarsson J., Schreyer S. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J. 2006;20:434–443. PubMed
Schuhmann K., Srzentic K., Nagornov K.O., Thomas H., Gutmann T., Coskun U., Tsybin Y.O., Shevchenko A. Monitoring membrane lipidome turnover by metabolic (15)N labeling and shotgun ultra-high-resolution orbitrap Fourier transform mass spectrometry. Anal. Chem. 2017;89:12857–12865. PubMed
Zullig T., Kofeler H.C. High resolution mass spectrometry in lipidomics. Mass Spectrom. Rev. 2021;40:162–176. PubMed PMC
Almeida R., Berzina Z., Arnspang E.C., Baumgart J., Vogt J., Nitsch R., Ejsing C.S. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis. Anal. Chem. 2015;87:1749–1756. PubMed
Schuhmann K., Moon H., Thomas H., Ackerman J.M., Groessl M., Wagner N., Kellmann M., Henry I., Nadler A., Shevchenko A. Quantitative fragmentation model for bottom-up shotgun lipidomics. Anal. Chem. 2019;91:12085–12093. PubMed PMC
Hu C., Wang C., He L., Han X. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. Trends Analyt. Chem. 2019;120:115330. PubMed PMC
Schwudke D., Oegema J., Burton L., Entchev E., Hannich J.T., Ejsing C.S., Kurzchalia T., Shevchenko A. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal. Chem. 2006;78:585–595. PubMed
Hsu F.F. Mass spectrometry-based shotgun lipidomics - a critical review from the technical point of view. Anal. Bioanal. Chem. 2018;410:6387–6409. PubMed PMC
Koivusalo M., Haimi P., Heikinheimo L., Kostiainen R., Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 2001;42:663–672. PubMed
Han X., Yang K., Yang J., Fikes K.N., Cheng H., Gross R.W. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J. Am. Soc. Mass Spectrom. 2006;17:264–274. PubMed
Ovcacikova M., Lisa M., Cifkova E., Holcapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A. 2016;1450:76–85. PubMed
Kauhanen D., Sysi-Aho M., Koistinen K.M., Laaksonen R., Sinisalo J., Ekroos K. Development and validation of a high-throughput LC-MS/MS assay for routine measurement of molecular ceramides. Anal. Bioanal. Chem. 2016;408:3475–3483. PubMed
Triebl A., Trotzmuller M., Hartler J., Stojakovic T., Kofeler H.C. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017;1053:72–80. PubMed PMC
Danne-Rasche N., Coman C., Ahrends R. Nano-LC/NSI MS refines lipidomics by enhancing lipid coverage, measurement sensitivity, and linear dynamic range. Anal. Chem. 2018;90:8093–8101. PubMed
Schott H.F., Krautbauer S., Horing M., Liebisch G., Matysik S. A validated, fast method for quantification of sterols and gut microbiome derived 5alpha/beta-stanols in human feces by isotope dilution LC-high-resolution MS. Anal. Chem. 2018;90:8487–8494. PubMed
Cifkova E., Holcapek M., Lisa M., Ovcacikova M., Lycka A., Lynen F., Sandra P. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal. Chem. 2012;84:10064–10070. PubMed
Scherer M., Schmitz G., Liebisch G. Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal. Chem. 2010;82:8794–8799. PubMed
Yu X., Chen K., Li S., Wang Y., Shen Q. Lipidomics differentiation of soft-shelled turtle strains using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019;1112:11–15. PubMed
Ventura G., Bianco M., Calvano C.D., Losito I., Cataldi T.R.I. HILIC-ESI-FTMS with all ion fragmentation (AIF) scans as a tool for fast lipidome investigations. Molecules. 2020;25:2310. PubMed PMC
da Costa E., Azevedo V., Melo T., Rego A.M., Evtuguin D.V., Domingues P., Calado R., Pereira R., Abreu M.H., Domingues M.R. High-resolution lipidomics of the early life stages of the red seaweed Porphyra dioica. Molecules. 2018;23:187. PubMed PMC
Leithner K., Triebl A., Trotzmuller M., Hinteregger B., Leko P., Wieser B.I., Grasmann G., Bertsch A.L., Zullig T., Stacher E., Valli A., Prassl R., Olschewski A., Harris A.L., Kofeler H.C., et al. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2018;115:6225–6230. PubMed PMC
Lisa M., Holcapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography-mass spectrometry. Anal. Chem. 2015;87:7187–7195. PubMed
Kliman M., May J.C., McLean J.A. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta. 2011;1811:935–945. PubMed PMC
Dodds J.N., Baker E.S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 2019;30:2185–2195. PubMed PMC
Baker P.R., Armando A.M., Campbell J.L., Quehenberger O., Dennis E.A. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J. Lipid Res. 2014;55:2432–2442. PubMed PMC
Shvartsburg A.A., Isaac G., Leveque N., Smith R.D., Metz T.O. Separation and classification of lipids using differential ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 2011;22:1146–1155. PubMed PMC
Kyle J.E., Zhang X., Weitz K.K., Monroe M.E., Ibrahim Y.M., Moore R.J., Cha J., Sun X., Lovelace E.S., Wagoner J., Polyak S.J., Metz T.O., Dey S.K., Smith R.D., Burnum-Johnson K.E., et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 2016;141:1649–1659. PubMed PMC
Paglia G., Angel P., Williams J.P., Richardson K., Olivos H.J., Thompson J.W., Menikarachchi L., Lai S., Walsh C., Moseley A., Plumb R.S., Grant D.F., Palsson B.O., Langridge J., Geromanos S., et al. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal. Chem. 2015;87:1137–1144. PubMed PMC
Paglia G., Kliman M., Claude E., Geromanos S., Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal. Bioanal. Chem. 2015;407:4995–5007. PubMed
Paglia G., Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 2017;12:797–813. PubMed
Groessl M., Graf S., Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 2015;140:6904–6911. PubMed
May J.C., Knochenmuss R., Fjeldsted J.C., McLean J.A. Resolution of isomeric mixtures in ion mobility using a combined demultiplexing and peak deconvolution technique. Anal. Chem. 2020;92:9482–9492. PubMed
Silveira J.A., Ridgeway M.E., Park M.A. High resolution trapped ion mobility spectrometery of peptides. Anal. Chem. 2014;86:5624–5627. PubMed
Bowman A.P., Abzalimov R.R., Shvartsburg A.A. Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2017;28:1552–1561. PubMed
Deng L., Ibrahim Y.M., Baker E.S., Aly N.A., Hamid A.M., Zhang X., Zheng X., Garimella S.V.B., Webb I.K., Prost S.A., Sandoval J.A., Norheim R.V., Anderson G.A., Tolmachev A.V., Smith R.D. Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. ChemistrySelect. 2016;1:2396–2399. PubMed PMC
Ibrahim Y.M., Hamid A.M., Deng L., Garimella S.V., Webb I.K., Baker E.S., Smith R.D. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst. 2017;142:1010–1021. PubMed PMC
Wojcik R., Webb I.K., Deng L., Garimella S.V., Prost S.A., Ibrahim Y.M., Baker E.S., Smith R.D. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int. J. Mol. Sci. 2017;18:183. PubMed PMC
Wormwood Moser K.L., Van Aken G., DeBord D., Hatcher N.G., Maxon L., Sherman M., Yao L., Ekroos K. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics. Anal. Chim. Acta. 2021;1146:77–87. PubMed
Liebisch G., Ejsing C.S., Ekroos K. Identification and annotation of lipid species in metabolomics studies need improvement. Clin. Chem. 2015;61:1542–1544. PubMed
Koelmel J.P., Ulmer C.Z., Jones C.M., Yost R.A., Bowden J.A. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:766–770. PubMed PMC
Kofeler H.C., Eichmann T.O., Ahrends R., Bowden J.A., Danne-Rasche N., Dennis E.A., Fedorova M., Griffiths W.J., Han X., Hartler J., Holcapek M., Jirasko R., Koelmel J.P., Ejsing C.S., Liebisch G., et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun. 2021;12:4771. PubMed PMC
Pauling J.K., Hermansson M., Hartler J., Christiansen K., Gallego S.F., Peng B., Ahrends R., Ejsing C.S. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One. 2017;12 PubMed PMC
Ekroos K., Ejsing C.S., Bahr U., Karas M., Simons K., Shevchenko A. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 2003;44:2181–2192. PubMed
Wozny K., Lehmann W.D., Wozny M., Akbulut B.S., Brugger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2019;411:915–924. PubMed PMC
Marshall D.L., Criscuolo A., Young R.S.E., Poad B.L.J., Zeller M., Reid G.E., Mitchell T.W., Blanksby S.J. Mapping unsaturation in human plasma lipids by data-independent ozone-induced dissociation. J. Am. Soc. Mass Spectrom. 2019;30:1621–1630. PubMed
Pham H.T., Ly T., Trevitt A.J., Mitchell T.W., Blanksby S.J. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal. Chem. 2012;84:7525–7532. PubMed
Ma X., Chong L., Tian R., Shi R., Hu T.Y., Ouyang Z., Xia Y. Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. U. S. A. 2016;113:2573–2578. PubMed PMC
Randolph C.E., Blanksby S.J., McLuckey S.A. Toward complete structure elucidation of glycerophospholipids in the gas phase through charge inversion ion/ion chemistry. Anal. Chem. 2020;92:1219–1227. PubMed PMC
Frankfater C., Jiang X., Hsu F.F. Characterization of long-chain fatty acid as N-(4-aminomethylphenyl) pyridinium derivative by MALDI LIFT-TOF/TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 2018;29:1688–1699. PubMed PMC
Jensen N.J., Gross M.L. Mass spectrometry methods for structural determination and analysis of fatty acids. Mass Spectrom. Rev. 1987;6:497–536.
Pittenauer E., Allmaier G. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J. Am. Soc. Mass Spectrom. 2009;20:1037–1047. PubMed
Han X., Gross R.W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 2001;295:88–100. PubMed
Liebisch G., Lieser B., Rathenberg J., Drobnik W., Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta. 2004;1686:108–117. PubMed
Gathungu R.M., Larrea P., Sniatynski M.J., Marur V.R., Bowden J.A., Koelmel J.P., Starke-Reed P., Hubbard V.S., Kristal B.S. Optimization of electrospray ionization source parameters for lipidomics to reduce misannotation of in-source fragments as precursor ions. Anal. Chem. 2018;90:13523–13532. PubMed PMC
Hu C., Luo W., Xu J., Han X. Recognition and avoidance of ion source-generated artifacts in lipidomics analysis. Mass Spectrom. Rev. September 30, 2020 doi: 10.1002/mas.21659. Epub ahead of print. PubMed DOI PMC
Horejsi K., Jirasko R., Chocholouskova M., Wolrab D., Kahoun D., Holcapek M. Comprehensive identification of glycosphingolipids in human plasma using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. Metabolites. 2021;11:140. PubMed PMC
Vankova Z., Peterka O., Chocholouskova M., Wolrab D., Jirasko R., Holcapek M. Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal. Bioanal. Chem. July 9, 2021 doi: 10.1007/s00216-021-03492-4. Epub ahead of print. PubMed DOI
Ernst R., Ejsing C.S., Antonny B. Homeoviscous adaptation and the regulation of membrane lipids. J. Mol. Biol. 2016;428:4776–4791. PubMed
Krautbauer S., Buchler C., Liebisch G. Relevance in the use of appropriate internal standards for accurate quantification using LC-MS/MS: tauro-conjugated bile acids as an example. Anal. Chem. 2016;88:10957–10961. PubMed
Horing M., Ejsing C.S., Krautbauer S., Ertl V.M., Burkhardt R., Liebisch G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. J. Lipid Res. 2021;62:100050. PubMed PMC
Gallego S.F., Hermansson M., Liebisch G., Hodson L., Ejsing C.S. Total fatty acid analysis of human blood samples in one minute by high-resolution mass spectrometry. Biomolecules. 2018;9:7. PubMed PMC
Kopczynski D., Hoffmann N., Peng B., Ahrends R. Goslin: a grammar of succinct lipid nomenclature. Anal. Chem. 2020;92:10957–10960. PubMed PMC
Haug K., Cochrane K., Nainala V.C., Williams M., Chang J., Jayaseelan K.V., O'Donovan C. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48:D440–D444. PubMed PMC
Hoffmann N., Rein J., Sachsenberg T., Hartler J., Haug K., Mayer G., Alka O., Dayalan S., Pearce J.T.M., Rocca-Serra P., Qi D., Eisenacher M., Perez-Riverol Y., Vizcaino J.A., Salek R.M., et al. mzTab-M: a data standard for sharing quantitative results in mass spectrometry metabolomics. Anal. Chem. 2019;91:3302–3310. PubMed PMC
Hoffmann N., Hartler J., Ahrends R. jmzTab-M: a reference parser, writer, and validator for the proteomics standards initiative mzTab 2.0 metabolomics standard. Anal. Chem. 2019;91:12615–12618. PubMed
Hartler J., Triebl A., Ziegl A., Trotzmuller M., Rechberger G.N., Zeleznik O.A., Zierler K.A., Torta F., Cazenave-Gassiot A., Wenk M.R., Fauland A., Wheelock C.E., Armando A.M., Quehenberger O., Zhang Q., et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods. 2017;14:1171–1174. PubMed PMC
Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., Higashi Y., Okazaki Y., Zhou Z., Zhu Z.J., Koelmel J., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. PubMed
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., Porto C., Bouslimani A., Melnik A.V., Meehan M.J., Liu W.T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. PubMed PMC
Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.E., Li S., Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. PubMed PMC
Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., Merrill A.H., Jr., Murphy R.C., Raetz C.R., Russell D.W., Subramaniam S. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. PubMed PMC
Aimo L., Liechti R., Hyka-Nouspikel N., Niknejad A., Gleizes A., Gotz L., Kuznetsov D., David F.P., van der Goot F.G., Riezman H., Bougueleret L., Xenarios I., Bridge A. The SwissLipids knowledgebase for lipid biology. Bioinformatics. 2015;31:2860–2866. PubMed PMC
Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions