Recommendations for good practice in MS-based lipidomics

. 2021 ; 62 () : 100138. [epub] 20211016

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34662536

Grantová podpora
P30 ES025128 NIEHS NIH HHS - United States
P 33298 Austrian Science Fund FWF - Austria
RF1 AG061872 NIA NIH HHS - United States
P42 ES031009 NIEHS NIH HHS - United States
RF1 AG061729 NIA NIH HHS - United States
P30 AG066546 NIA NIH HHS - United States
P42 ES027704 NIEHS NIH HHS - United States

Odkazy

PubMed 34662536
PubMed Central PMC8585648
DOI 10.1016/j.jlr.2021.100138
PII: S0022-2275(21)00120-6
Knihovny.cz E-zdroje

In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.

Zobrazit více v PubMed

Wenk M.R. Lipidomics: new tools and applications. Cell. 2010;143:888–895. PubMed

Holcapek M., Liebisch G., Ekroos K. Lipidomic analysis. Anal. Chem. 2018;90:4249–4257. PubMed

Han X., Gross R.W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. U. S. A. 1994;91:10635–10639. PubMed PMC

Brugger B., Erben G., Sandhoff R., Wieland F.T., Lehmann W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 1997;94:2339–2344. PubMed PMC

Han X., Gross R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 2003;44:1071–1079. PubMed

Spener F., Lagarde M., Géloên A., Record M. Editorial: what is lipidomics? Eur. J. Lipid Sci. Technol. 2003;105:481–482.

Han X., Gross R.W. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 2005;24:367–412. PubMed

Fauland A., Kofeler H., Trotzmuller M., Knopf A., Hartler J., Eberl A., Chitraju C., Lankmayr E., Spener F. A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J. Lipid Res. 2011;52:2314–2322. PubMed PMC

Lisa M., Cifkova E., Khalikova M., Ovcacikova M., Holcapek M. Lipidomic analysis of biological samples: comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J. Chromatogr. A. 2017;1525:96–108. PubMed

Liebisch G., Ahrends R., Arita M., Arita M., Bowden J.A., Ejsing C.S., Griffiths W.J., Holcapek M., Köfeler H.C., Mitchell T.W., Wenk M.R., Ekroos K. Lipidomics needs more standardization. Nat. Metab. 2019;1:745–747. PubMed

Worheide M.A., Krumsiek J., Kastenmuller G., Arnold M. Multi-omics integration in biomedical research - a metabolomics-centric review. Anal. Chim. Acta. 2021;1141:144–162. PubMed PMC

Liebisch G., Vizcaino J.A., Kofeler H., Trotzmuller M., Griffiths W.J., Schmitz G., Spener F., Wakelam M.J.O. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. PubMed PMC

Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., Fedorova M., Feussner I., Griffiths W.J., Kofeler H., Merrill A.H., Jr., Murphy R.C., O'Donnell V.B., Oskolkova O., Subramaniam S., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. PubMed PMC

Liebisch G., Drobnik W., Lieser B., Schmitz G. High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry. Clin. Chem. 2002;48:2217–2224. PubMed

Scherer M., Schmitz G., Liebisch G. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2009;55:1218–1222. PubMed

Kim J., Hoppel C.L. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013;912:105–114. PubMed PMC

Okudaira M., Inoue A., Shuto A., Nakanaga K., Kano K., Makide K., Saigusa D., Tomioka Y., Aoki J. Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS. J. Lipid Res. 2014;55:2178–2192. PubMed PMC

Kano K., Matsumoto H., Kono N., Kurano M., Yatomi Y., Aoki J. Suppressing postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA quantification. J. Lipid Res. 2021;62:100029. PubMed PMC

Ulmer C.Z., Koelmel J.P., Jones C.M., Garrett T.J., Aristizabal-Henao J.J., Vesper H.W., Bowden J.A. A review of efforts to improve lipid stability during sample preparation and standardization efforts to ensure accuracy in the reporting of lipid measurements. Lipids. 2021;56:3–16. PubMed PMC

Krautbauer S., Blazquez R., Liebisch G., Hoering M., Neubert P., Pukrop T., Burkhardt R., Sigruener A. Application of lipid class ratios for sample stability monitoring-evaluation of murine tissue homogenates and SDS as a stabilizer. Metabolites. 2021;11:277. PubMed PMC

Lebaron F.N., Folch J. The effect of pH and salt concentration on aqueous extraction of brain proteins and lipoproteins. J. Neurochem. 1959;4:1–8. PubMed

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. PubMed

Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. PubMed PMC

Triebl A., Trotzmuller M., Eberl A., Hanel P., Hartler J., Kofeler H.C. Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction liquid chromatography coupled to electrospray ionization high resolution mass spectrometry. J. Chromatogr. A. 2014;1347:104–110. PubMed PMC

Lofgren L., Stahlman M., Forsberg G.B., Saarinen S., Nilsson R., Hansson G.I. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 2012;53:1690–1700. PubMed PMC

Zhao Z., Xu Y. An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J. Lipid Res. 2010;51:652–659. PubMed PMC

Höring M., Krautbauer S., Hiltl L., Babl V., Sigruener A., Burkhardt R., Liebisch G. Accurate lipid quantification of tissue homogenates requires suitable sample concentration, solvent composition, and homogenization procedure—a case study in murine liver. Metabolites. 2021;11:365. PubMed PMC

Burla B., Arita M., Arita M., Bendt A.K., Cazenave-Gassiot A., Dennis E.A., Ekroos K., Han X., Ikeda K., Liebisch G., Lin M.K., Loh T.P., Meikle P.J., Oresic M., Quehenberger O., et al. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018;59:2001–2017. PubMed PMC

Reis A., Rudnitskaya A., Blackburn G.J., Mohd Fauzi N., Pitt A.R., Spickett C.M. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 2013;54:1812–1824. PubMed PMC

Pati S., Nie B., Arnold R.D., Cummings B.S. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 2016;30:695–709. PubMed PMC

Fauland A., Trotzmuller M., Eberl A., Afiuni-Zadeh S., Kofeler H., Guo X., Lankmayr E. An improved SPE method for fractionation and identification of phospholipids. J. Sep. Sci. 2013;36:744–751. PubMed

Pernet F., Pelletier C.J., Milley J. Comparison of three solid-phase extraction methods for fatty acid analysis of lipid fractions in tissues of marine bivalves. J. Chromatogr. A. 2006;1137:127–137. PubMed

Bodennec J., Koul O., Aguado I., Brichon G., Zwingelstein G., Portoukalian J. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J. Lipid Res. 2000;41:1524–1531. PubMed

Wong C.H., Leung D.K., Tang F.P., Wong J.K., Yu N.H., Wan T.S. Rapid screening of anabolic steroids in horse urine with ultra-high-performance liquid chromatography/tandem mass spectrometry after chemical derivatisation. J. Chromatogr. A. 2012;1232:257–265. PubMed

Triebl A., Weissengruber S., Trotzmuller M., Lankmayr E., Kofeler H. Quantitative analysis of N-acylphosphatidylethanolamine molecular species in rat brain using solid-phase extraction combined with reversed-phase chromatography and tandem mass spectrometry. J. Sep. Sci. 2016;39:2474–2480. PubMed PMC

Narayanaswamy P., Shinde S., Sulc R., Kraut R., Staples G., Thiam C.H., Grimm R., Sellergren B., Torta F., Wenk M.R. Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal. Chem. 2014;86:3043–3047. PubMed

Hajek R., Jirasko R., Lisa M., Cifkova E., Holcapek M. Hydrophilic interaction liquid chromatography-mass spectrometry characterization of gangliosides in biological samples. Anal. Chem. 2017;89:12425–12432. PubMed

Griffiths W.J., Gilmore I., Yutuc E., Abdel-Khalik J., Crick P.J., Hearn T., Dickson A., Bigger B.W., Wu T.H., Goenka A., Ghosh A., Jones S.A., Wang Y. Identification of unusual oxysterols and bile acids with 7-oxo or 3beta,5alpha,6beta-trihydroxy functions in human plasma by charge-tagging mass spectrometry with multistage fragmentation. J. Lipid Res. 2018;59:1058–1070. PubMed PMC

Honda A., Yamashita K., Miyazaki H., Shirai M., Ikegami T., Xu G., Numazawa M., Hara T., Matsuzaki Y. Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J. Lipid Res. 2008;49:2063–2073. PubMed

Lee J.C., Byeon S.K., Moon M.H. Relative quantification of phospholipids based on isotope-labeled methylation by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry: enhancement in cardiolipin profiling. Anal. Chem. 2017;89:4969–4977. PubMed

Wang M., Wang C., Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-what, how and why? Mass Spectrom. Rev. 2017;36:693–714. PubMed PMC

Liebisch G., Drobnik W., Reil M., Trumbach B., Arnecke R., Olgemoller B., Roscher A., Schmitz G. Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS) J. Lipid Res. 1999;40:1539–1546. PubMed

Hsu F.F., Turk J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J. Am. Soc. Mass Spectrom. 2000;11:986–999. PubMed

Hsu F.F., Turk J. Charge-remote and charge-driven fragmentation processes in diacyl glycerophosphoethanolamine upon low-energy collisional activation: a mechanistic proposal. J. Am. Soc. Mass Spectrom. 2000;11:892–899. PubMed

Hsu F.F., Turk J. Charge-driven fragmentation processes in diacyl glycerophosphatidic acids upon low-energy collisional activation. A mechanistic proposal. J. Am. Soc. Mass Spectrom. 2000;11:797–803. PubMed

Hsu F.F., Turk J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J. Am. Soc. Mass Spectrom. 2003;14:352–363. PubMed

Hsu F.F., Turk J. Characterization of phosphatidylethanolamine as a lithiated adduct by triple quadrupole tandem mass spectrometry with electrospray ionization. J. Mass Spectrom. 2000;35:595–606. PubMed

Hsu F.F., Turk J. Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2000;11:437–449. PubMed

Hsu F.F., Turk J. Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 2001;12:61–79. PubMed

Hsu F.F., Turk J. Characterization of ceramides by low energy collisional-activated dissociation tandem mass spectrometry with negative-ion electrospray ionization. J. Am. Soc. Mass Spectrom. 2002;13:558–570. PubMed

Hsu F.F., Turk J., Stewart M.E., Downing D.T. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2002;13:680–695. PubMed

Han X., Yang K., Gross R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 2012;31:134–178. PubMed PMC

Horing M., Ejsing C.S., Hermansson M., Liebisch G. Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution Fourier transform mass spectrometry utilizing species-specific response factors. Anal. Chem. 2019;91:3459–3466. PubMed

Almeida R., Pauling J.K., Sokol E., Hannibal-Bach H.K., Ejsing C.S. Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2015;26:133–148. PubMed

Schuhmann K., Almeida R., Baumert M., Herzog R., Bornstein S.R., Shevchenko A. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 2012;47:96–104. PubMed

Linden D., William-Olsson L., Ahnmark A., Ekroos K., Hallberg C., Sjogren H.P., Becker B., Svensson L., Clapham J.C., Oscarsson J., Schreyer S. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J. 2006;20:434–443. PubMed

Schuhmann K., Srzentic K., Nagornov K.O., Thomas H., Gutmann T., Coskun U., Tsybin Y.O., Shevchenko A. Monitoring membrane lipidome turnover by metabolic (15)N labeling and shotgun ultra-high-resolution orbitrap Fourier transform mass spectrometry. Anal. Chem. 2017;89:12857–12865. PubMed

Zullig T., Kofeler H.C. High resolution mass spectrometry in lipidomics. Mass Spectrom. Rev. 2021;40:162–176. PubMed PMC

Almeida R., Berzina Z., Arnspang E.C., Baumgart J., Vogt J., Nitsch R., Ejsing C.S. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis. Anal. Chem. 2015;87:1749–1756. PubMed

Schuhmann K., Moon H., Thomas H., Ackerman J.M., Groessl M., Wagner N., Kellmann M., Henry I., Nadler A., Shevchenko A. Quantitative fragmentation model for bottom-up shotgun lipidomics. Anal. Chem. 2019;91:12085–12093. PubMed PMC

Hu C., Wang C., He L., Han X. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. Trends Analyt. Chem. 2019;120:115330. PubMed PMC

Schwudke D., Oegema J., Burton L., Entchev E., Hannich J.T., Ejsing C.S., Kurzchalia T., Shevchenko A. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal. Chem. 2006;78:585–595. PubMed

Hsu F.F. Mass spectrometry-based shotgun lipidomics - a critical review from the technical point of view. Anal. Bioanal. Chem. 2018;410:6387–6409. PubMed PMC

Koivusalo M., Haimi P., Heikinheimo L., Kostiainen R., Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 2001;42:663–672. PubMed

Han X., Yang K., Yang J., Fikes K.N., Cheng H., Gross R.W. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J. Am. Soc. Mass Spectrom. 2006;17:264–274. PubMed

Ovcacikova M., Lisa M., Cifkova E., Holcapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A. 2016;1450:76–85. PubMed

Kauhanen D., Sysi-Aho M., Koistinen K.M., Laaksonen R., Sinisalo J., Ekroos K. Development and validation of a high-throughput LC-MS/MS assay for routine measurement of molecular ceramides. Anal. Bioanal. Chem. 2016;408:3475–3483. PubMed

Triebl A., Trotzmuller M., Hartler J., Stojakovic T., Kofeler H.C. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017;1053:72–80. PubMed PMC

Danne-Rasche N., Coman C., Ahrends R. Nano-LC/NSI MS refines lipidomics by enhancing lipid coverage, measurement sensitivity, and linear dynamic range. Anal. Chem. 2018;90:8093–8101. PubMed

Schott H.F., Krautbauer S., Horing M., Liebisch G., Matysik S. A validated, fast method for quantification of sterols and gut microbiome derived 5alpha/beta-stanols in human feces by isotope dilution LC-high-resolution MS. Anal. Chem. 2018;90:8487–8494. PubMed

Cifkova E., Holcapek M., Lisa M., Ovcacikova M., Lycka A., Lynen F., Sandra P. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal. Chem. 2012;84:10064–10070. PubMed

Scherer M., Schmitz G., Liebisch G. Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal. Chem. 2010;82:8794–8799. PubMed

Yu X., Chen K., Li S., Wang Y., Shen Q. Lipidomics differentiation of soft-shelled turtle strains using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019;1112:11–15. PubMed

Ventura G., Bianco M., Calvano C.D., Losito I., Cataldi T.R.I. HILIC-ESI-FTMS with all ion fragmentation (AIF) scans as a tool for fast lipidome investigations. Molecules. 2020;25:2310. PubMed PMC

da Costa E., Azevedo V., Melo T., Rego A.M., Evtuguin D.V., Domingues P., Calado R., Pereira R., Abreu M.H., Domingues M.R. High-resolution lipidomics of the early life stages of the red seaweed Porphyra dioica. Molecules. 2018;23:187. PubMed PMC

Leithner K., Triebl A., Trotzmuller M., Hinteregger B., Leko P., Wieser B.I., Grasmann G., Bertsch A.L., Zullig T., Stacher E., Valli A., Prassl R., Olschewski A., Harris A.L., Kofeler H.C., et al. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2018;115:6225–6230. PubMed PMC

Lisa M., Holcapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography-mass spectrometry. Anal. Chem. 2015;87:7187–7195. PubMed

Kliman M., May J.C., McLean J.A. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta. 2011;1811:935–945. PubMed PMC

Dodds J.N., Baker E.S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 2019;30:2185–2195. PubMed PMC

Baker P.R., Armando A.M., Campbell J.L., Quehenberger O., Dennis E.A. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J. Lipid Res. 2014;55:2432–2442. PubMed PMC

Shvartsburg A.A., Isaac G., Leveque N., Smith R.D., Metz T.O. Separation and classification of lipids using differential ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 2011;22:1146–1155. PubMed PMC

Kyle J.E., Zhang X., Weitz K.K., Monroe M.E., Ibrahim Y.M., Moore R.J., Cha J., Sun X., Lovelace E.S., Wagoner J., Polyak S.J., Metz T.O., Dey S.K., Smith R.D., Burnum-Johnson K.E., et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 2016;141:1649–1659. PubMed PMC

Paglia G., Angel P., Williams J.P., Richardson K., Olivos H.J., Thompson J.W., Menikarachchi L., Lai S., Walsh C., Moseley A., Plumb R.S., Grant D.F., Palsson B.O., Langridge J., Geromanos S., et al. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal. Chem. 2015;87:1137–1144. PubMed PMC

Paglia G., Kliman M., Claude E., Geromanos S., Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal. Bioanal. Chem. 2015;407:4995–5007. PubMed

Paglia G., Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 2017;12:797–813. PubMed

Groessl M., Graf S., Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 2015;140:6904–6911. PubMed

May J.C., Knochenmuss R., Fjeldsted J.C., McLean J.A. Resolution of isomeric mixtures in ion mobility using a combined demultiplexing and peak deconvolution technique. Anal. Chem. 2020;92:9482–9492. PubMed

Silveira J.A., Ridgeway M.E., Park M.A. High resolution trapped ion mobility spectrometery of peptides. Anal. Chem. 2014;86:5624–5627. PubMed

Bowman A.P., Abzalimov R.R., Shvartsburg A.A. Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2017;28:1552–1561. PubMed

Deng L., Ibrahim Y.M., Baker E.S., Aly N.A., Hamid A.M., Zhang X., Zheng X., Garimella S.V.B., Webb I.K., Prost S.A., Sandoval J.A., Norheim R.V., Anderson G.A., Tolmachev A.V., Smith R.D. Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. ChemistrySelect. 2016;1:2396–2399. PubMed PMC

Ibrahim Y.M., Hamid A.M., Deng L., Garimella S.V., Webb I.K., Baker E.S., Smith R.D. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst. 2017;142:1010–1021. PubMed PMC

Wojcik R., Webb I.K., Deng L., Garimella S.V., Prost S.A., Ibrahim Y.M., Baker E.S., Smith R.D. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int. J. Mol. Sci. 2017;18:183. PubMed PMC

Wormwood Moser K.L., Van Aken G., DeBord D., Hatcher N.G., Maxon L., Sherman M., Yao L., Ekroos K. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics. Anal. Chim. Acta. 2021;1146:77–87. PubMed

Liebisch G., Ejsing C.S., Ekroos K. Identification and annotation of lipid species in metabolomics studies need improvement. Clin. Chem. 2015;61:1542–1544. PubMed

Koelmel J.P., Ulmer C.Z., Jones C.M., Yost R.A., Bowden J.A. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:766–770. PubMed PMC

Kofeler H.C., Eichmann T.O., Ahrends R., Bowden J.A., Danne-Rasche N., Dennis E.A., Fedorova M., Griffiths W.J., Han X., Hartler J., Holcapek M., Jirasko R., Koelmel J.P., Ejsing C.S., Liebisch G., et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun. 2021;12:4771. PubMed PMC

Pauling J.K., Hermansson M., Hartler J., Christiansen K., Gallego S.F., Peng B., Ahrends R., Ejsing C.S. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One. 2017;12 PubMed PMC

Ekroos K., Ejsing C.S., Bahr U., Karas M., Simons K., Shevchenko A. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 2003;44:2181–2192. PubMed

Wozny K., Lehmann W.D., Wozny M., Akbulut B.S., Brugger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2019;411:915–924. PubMed PMC

Marshall D.L., Criscuolo A., Young R.S.E., Poad B.L.J., Zeller M., Reid G.E., Mitchell T.W., Blanksby S.J. Mapping unsaturation in human plasma lipids by data-independent ozone-induced dissociation. J. Am. Soc. Mass Spectrom. 2019;30:1621–1630. PubMed

Pham H.T., Ly T., Trevitt A.J., Mitchell T.W., Blanksby S.J. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal. Chem. 2012;84:7525–7532. PubMed

Ma X., Chong L., Tian R., Shi R., Hu T.Y., Ouyang Z., Xia Y. Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. U. S. A. 2016;113:2573–2578. PubMed PMC

Randolph C.E., Blanksby S.J., McLuckey S.A. Toward complete structure elucidation of glycerophospholipids in the gas phase through charge inversion ion/ion chemistry. Anal. Chem. 2020;92:1219–1227. PubMed PMC

Frankfater C., Jiang X., Hsu F.F. Characterization of long-chain fatty acid as N-(4-aminomethylphenyl) pyridinium derivative by MALDI LIFT-TOF/TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 2018;29:1688–1699. PubMed PMC

Jensen N.J., Gross M.L. Mass spectrometry methods for structural determination and analysis of fatty acids. Mass Spectrom. Rev. 1987;6:497–536.

Pittenauer E., Allmaier G. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J. Am. Soc. Mass Spectrom. 2009;20:1037–1047. PubMed

Han X., Gross R.W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 2001;295:88–100. PubMed

Liebisch G., Lieser B., Rathenberg J., Drobnik W., Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta. 2004;1686:108–117. PubMed

Gathungu R.M., Larrea P., Sniatynski M.J., Marur V.R., Bowden J.A., Koelmel J.P., Starke-Reed P., Hubbard V.S., Kristal B.S. Optimization of electrospray ionization source parameters for lipidomics to reduce misannotation of in-source fragments as precursor ions. Anal. Chem. 2018;90:13523–13532. PubMed PMC

Hu C., Luo W., Xu J., Han X. Recognition and avoidance of ion source-generated artifacts in lipidomics analysis. Mass Spectrom. Rev. September 30, 2020 doi: 10.1002/mas.21659. Epub ahead of print. PubMed DOI PMC

Horejsi K., Jirasko R., Chocholouskova M., Wolrab D., Kahoun D., Holcapek M. Comprehensive identification of glycosphingolipids in human plasma using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. Metabolites. 2021;11:140. PubMed PMC

Vankova Z., Peterka O., Chocholouskova M., Wolrab D., Jirasko R., Holcapek M. Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal. Bioanal. Chem. July 9, 2021 doi: 10.1007/s00216-021-03492-4. Epub ahead of print. PubMed DOI

Ernst R., Ejsing C.S., Antonny B. Homeoviscous adaptation and the regulation of membrane lipids. J. Mol. Biol. 2016;428:4776–4791. PubMed

Krautbauer S., Buchler C., Liebisch G. Relevance in the use of appropriate internal standards for accurate quantification using LC-MS/MS: tauro-conjugated bile acids as an example. Anal. Chem. 2016;88:10957–10961. PubMed

Horing M., Ejsing C.S., Krautbauer S., Ertl V.M., Burkhardt R., Liebisch G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. J. Lipid Res. 2021;62:100050. PubMed PMC

Gallego S.F., Hermansson M., Liebisch G., Hodson L., Ejsing C.S. Total fatty acid analysis of human blood samples in one minute by high-resolution mass spectrometry. Biomolecules. 2018;9:7. PubMed PMC

Kopczynski D., Hoffmann N., Peng B., Ahrends R. Goslin: a grammar of succinct lipid nomenclature. Anal. Chem. 2020;92:10957–10960. PubMed PMC

Haug K., Cochrane K., Nainala V.C., Williams M., Chang J., Jayaseelan K.V., O'Donovan C. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48:D440–D444. PubMed PMC

Hoffmann N., Rein J., Sachsenberg T., Hartler J., Haug K., Mayer G., Alka O., Dayalan S., Pearce J.T.M., Rocca-Serra P., Qi D., Eisenacher M., Perez-Riverol Y., Vizcaino J.A., Salek R.M., et al. mzTab-M: a data standard for sharing quantitative results in mass spectrometry metabolomics. Anal. Chem. 2019;91:3302–3310. PubMed PMC

Hoffmann N., Hartler J., Ahrends R. jmzTab-M: a reference parser, writer, and validator for the proteomics standards initiative mzTab 2.0 metabolomics standard. Anal. Chem. 2019;91:12615–12618. PubMed

Hartler J., Triebl A., Ziegl A., Trotzmuller M., Rechberger G.N., Zeleznik O.A., Zierler K.A., Torta F., Cazenave-Gassiot A., Wenk M.R., Fauland A., Wheelock C.E., Armando A.M., Quehenberger O., Zhang Q., et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods. 2017;14:1171–1174. PubMed PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., Higashi Y., Okazaki Y., Zhou Z., Zhu Z.J., Koelmel J., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. PubMed

Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., Porto C., Bouslimani A., Melnik A.V., Meehan M.J., Liu W.T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. PubMed PMC

Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.E., Li S., Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. PubMed PMC

Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., Merrill A.H., Jr., Murphy R.C., Raetz C.R., Russell D.W., Subramaniam S. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. PubMed PMC

Aimo L., Liechti R., Hyka-Nouspikel N., Niknejad A., Gleizes A., Gotz L., Kuznetsov D., David F.P., van der Goot F.G., Riezman H., Bougueleret L., Xenarios I., Bridge A. The SwissLipids knowledgebase for lipid biology. Bioinformatics. 2015;31:2860–2866. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...