• This record comes from PubMed

The development of a high-affinity conformation-sensitive antibody mimetic using a biocompatible copolymer carrier (iBody)

. 2021 Nov ; 297 (5) : 101342. [epub] 20211025

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34710374
PubMed Central PMC8600089
DOI 10.1016/j.jbc.2021.101342
PII: S0021-9258(21)01148-0
Knihovny.cz E-resources

Peptide display methods are a powerful tool for discovering new ligands of pharmacologically relevant targets. However, the selected ligands often suffer from low affinity. Using phage display, we identified a new bicyclic peptide binder of prostate-specific membrane antigen (PSMA), a metalloprotease frequently overexpressed in prostate cancer. We show that linking multiple copies of a selected low-affinity peptide to a biocompatible water-soluble N-(2-hydroxypropyl)methacrylamide copolymer carrier (iBody) improved binding of the conjugate by several orders of magnitude. Furthermore, using ELISA, enzyme kinetics, confocal microscopy, and other approaches, we demonstrate that the resulting iBody can distinguish between different conformations of the target protein. The possibility to develop stable, fully synthetic, conformation-selective antibody mimetics has potential applications for molecular recognition, diagnosis and treatment of many pathologies. This strategy could significantly contribute to more effective drug discovery and design.

See more in PubMed

Yu X., Yang Y.P., Dikici E., Deo S.K., Daunert S. Beyond antibodies as binding partners: The role of antibody mimetics in bioanalysis. Annu. Rev. Anal. Chem. 2017;10:293–320. PubMed PMC

Šácha P., Knedlík T., Schimer J., Tykvart J., Parolek J., Navrátil V., Dvořáková P., Sedlák F., Ulbrich K., Strohalm J., Majer P., Šubr V., Konvalinka J. iBodies: Modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties. Angew. Chem. Int. Ed. Engl. 2016;55:2356–2360. PubMed PMC

Dvořáková P., Bušek P., Knedlík T., Schimer J., Etrych T., Kostka L., Šromová L.S., Šubr V., Šácha P., Šedo A., Konvalinka J. Inhibitor-decorated polymer conjugates targeting fibroblast activation protein. J. Med. Chem. 2017;60:8385–8393. PubMed

Šimon P., Knedlík T., Blažková K., Dvořáková P., Březinová A., Kostka L., Šubr V., Konvalinka J., Šácha P. Identification of protein targets of bioactive small molecules using randomly photomodified probes. ACS Chem. Biol. 2018;13:3333–3342. PubMed

Pospíšilová K., Knedlík T., Šácha P., Kostka L., Schimer J., Brynda J., Král V., Cígler P., Navrátil V., Etrych T., Šubr V., Kugler M., Fábry M., Řezáčová P., Konvalinka J. Inhibitor–polymer conjugates as a versatile tool for detection and visualization of cancer-associated carbonic anhydrase isoforms. ACS Omega. 2019;4:6746–6756.

Beranová J., Knedlík T., Šimková A., Šubr V., Kostka L., Etrych T., Šácha P., Konvalinka J. Tris-(Nitrilotriacetic acid)-decorated polymer conjugates as tools for immobilization and visualization of His-tagged proteins. Catalysts. 2019;9:1011.

Mimmi S., Maisano D., Quinto I., Iaccino E. Phage display: An overview in context to drug discovery. Trends Pharmacol. Sci. 2019;40:87–91. PubMed

Smith G.P., Petrenko V.A. Phage display. Chem. Rev. 1997;97:391–410. PubMed

Clackson T., Hoogenboom H.R., Griffiths A.D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352:624–628. PubMed

Paduch M., Koide A., Uysal S., Rizk S.S., Koide S., Kossiakoff A.A. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods. 2013;60:3–14. PubMed PMC

Heinis C., Rutherford T., Freund S., Winter G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 2009;5:502–507. PubMed

Derda R., Ng S. Genetically encoded fragment-based discovery. Curr. Opin. Chem. Biol. 2019;50:128–137. PubMed

Ng S., Tjhung K.F., Paschal B.M., Noren C.J., Derda R. Chemical posttranslational modification of phage-displayed peptides. Methods Mol. Biol. 2015;1248:155–172. PubMed

Marshall C.H., Antonarakis E.S. Emerging treatments for metastatic castration-resistant prostate cancer: Immunotherapy, PARP inhibitors, and PSMA-targeted approaches. Cancer Treat. Res. Commun. 2020;23:100164. PubMed

Wang F., Li Z., Feng X., Yang D., Lin M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2021 doi: 10.1038/s41391-021-00394-5. PubMed DOI

Powers E., Karachaliou G.S., Kao C., Harrison M.R., Hoimes C.J., George D.J., Armstrong A.J., Zhang T. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J. Hematol. Oncol. 2020;13:144. PubMed PMC

Chen S., Morales-Sanfrutos J., Angelini A., Cutting B., Heinis C. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides. ChemBioChem. 2012;13:1032–1038. PubMed

Rebollo I.R., Angelini A., Heinis C. Phage display libraries of differently sized bicyclic peptides. Med. Chem. Commun. 2013;4:145–150.

Rentero Rebollo I., Sabisz M., Baeriswyl V., Heinis C. Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Res. 2014;42:e169. PubMed PMC

Matochko W.L., Chu K., Jin B., Lee S.W., Whitesides G.M., Derda R. Deep sequencing analysis of phage libraries using Illumina platform. Methods. 2012;58:47–55. PubMed

Tykvart J., Schimer J., Bařinková J., Pachl P., Poštová-Slavětínská L., Majer P., Konvalinka J., Šácha P. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg. Med. Chem. 2014;22:4099–4108. PubMed

Knedlík T., Navrátil V., Vik V., Pacík D., Šácha P., Konvalinka J. Detection and quantitation of glutamate carboxypeptidase II in human blood. Prostate. 2014;74:768–780. PubMed

Upadhyaya P., Lahdenranta J., Hurov K., Battula S., Dods R., Haines E., Kleyman M., Kristensson J., Kublin J., Lani R., Ma J., Mudd G., Repash E., Van Rietschoten K., Stephen T., et al. Anticancer immunity induced by a synthetic tumor-targeted CD137 agonist. J. Immunother. Cancer. 2021;9 PubMed PMC

Mesters J.R., Henning K., Hilgenfeld R. Human glutamate carboxypeptidase II inhibition: Structures of GCPII in complex with two potent inhibitors, quisqualate and 2-PMPA. Acta Crystallogr. D Biol. Crystallogr. 2007;63:508–513. PubMed

Tykvart J., Sácha P., Bařinka C., Knedlík T., Starková J., Lubkowski J., Konvalinka J. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II. Protein Expr. Purif. 2012;82:106–115. PubMed PMC

Šubr V., Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 2006;66:1525–1538.

Ishitake K., Satoh K., Kamigaito M., Okamoto Y. Stereogradient polymers formed by controlled/living radical polymerization of bulky methacrylate monomers. Angew. Chem. Int. Ed. 2009;48:1991–1994. PubMed

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. PubMed

Perrier S., Takolpuckdee P., Mars C.A. Reversible addition-fragmentation chain transfer polymerization: End group modification for functionalized polymers and chain transfer agent recovery. Macromolecules. 2005;38:2033–2036.

Barinka C., Rinnová M., Sácha P., Rojas C., Majer P., Slusher B.S., Konvalinka J. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 2002;80:477–487. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...