• This record comes from PubMed

Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host

. 2022 ; 12 () : 919786. [epub] 20220804

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Ticks are blood-feeding arthropods that use the components of their salivary glands to counter the host's hemostatic, inflammatory, and immune responses. The tick midgut also plays a crucial role in hematophagy. It is responsible for managing blood meals (storage and digestion) and protecting against host immunity and pathogen infections. Previous transcriptomic studies revealed the complexity of tick sialomes (salivary gland transcriptomes) and mialomes (midgut transcriptomes) which encode for protease inhibitors, lipocalins (histamine-binding proteins), disintegrins, enzymes, and several other tick-specific proteins. Several studies have demonstrated that mammalian hosts acquire tick resistance against repeated tick bites. Consequently, there is an urgent need to uncover how tick sialomes and mialomes respond to resistant hosts, as they may serve to develop novel tick control strategies and applications. Here, we mimicked natural repeated tick bites in a laboratory setting and analyzed gene expression dynamics in the salivary glands and midguts of adult female ticks. Rabbits were subjected to a primary (feeding on a naive host) and a secondary infestation of the same host (we re-exposed the hosts but to other ticks). We used single salivary glands and midguts dissected from individual siblings adult pathogen-free female Ixodes ricinus to reduce genetic variability between individual ticks. The comprehensive analysis of 88 obtained RNA-seq data sets allows us to provide high-quality annotated sialomes and mialomes from individual ticks. Comparisons between fed/unfed, timepoints, and exposures yielded as many as 3000 putative differentially expressed genes (DEG). Interestingly, when classifying the exposure DEGs by means of a clustering approach we observed that the majority of these genes show increased expression at early feeding time-points in the mid-gut of re-exposed ticks. The existence of clearly defined groups of genes with highly similar responses to re-exposure suggests the existence of molecular swiches. In silico functional analysis shows that these early feeding reexposure response genes form a dense interaction network at protein level being related to virtually all aspects of gene expression regulation and glycosylation. The processed data is available through an easy-to-use database-associated webpage (https://arn.ugr.es/IxoriDB/) that can serve as a valuable resource for tick research.

See more in PubMed

Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., et al. . (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423. doi: 10.1038/s41587-019-0036-z PubMed DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI

Aounallah H., Bensaoud C., M’ghirbi Y., Faria F., Chmelař J., Kotsyfakis M. (2020). Tick salivary compounds for targeted immunomodulatory therapy. Front. Immunol. 11. doi: 10.3389/FIMMU.2020.583845/BIBTEX PubMed DOI PMC

Babraham Bioinformatics (2018) Babraham bioinformatics - trim galore. Available at: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.

Barker S. C., Walker A. R. (2014). Ticks of australia. the species that infest domestic animals and humans. Zootaxa. 3816, 1–144. doi: 10.11646/ZOOTAXA.3816.1.1 PubMed DOI

Ben Beard C., Occi J., Bonilla D. L., Egizi A. M., Fonseca D. M., Mertins J. W., et al. . (2019). Multistate infestation with the exotic disease–vector tick haemaphysalis longicornis — united states, august 2017–September 2018. MMWR Morb Mortal Weekly Rep. 67, 1310–1313. doi: 10.15585/MMWR.MM6747A3 PubMed DOI PMC

Bensaoud C., Martins L. A., Aounallah H., Hackenberg M., Kotsyfakis M. (2020). Emerging roles of non-coding RNAs in vector-borne infections. J. Cell Sci. 134. doi: 10.1242/JCS.246744 PubMed DOI

Blanco-Míguez A., Fdez-Riverola F., Sánchez B., Lourenço A. (2018). BlasterJS: A novel interactive JavaScript visualisation component for BLAST alignment results. PloS One 13, e0205286. doi: 10.1371/JOURNAL.PONE.0205286 PubMed DOI PMC

Boutet E., Lieberherr D., Tognolli M., Schneider M., Bairoch A. (2007). UniProtKB/Swiss-prot. Methods Mol. Biol. 406, 89–112. doi: 10.1007/978-1-59745-535-0_4 PubMed DOI

Brites-Neto J., Duarte K. M. R., Martins T. F. (2015). Tick-borne infections in human and animal population worldwide. Vet World. 8, 301. doi: 10.14202/VETWORLD.2015.301-315 PubMed DOI PMC

Burda P., Aebi M. (1999). The dolichol pathway of n-linked glycosylation. Biochim. Biophys. Acta (BBA) - Gen. Subjects 1426, 239–257. doi: 10.1016/S0304-4165(98)00127-5 PubMed DOI

Centers for Disease Control and Prevention Centers for disease control and prevention. Dis. Transmitted by Ticks. https://www.cdc.gov/ticks/diseases/.

Chmelař J., Kotál J., Karim S., Kopacek P., Francischetti I. M. B., Pedra J. H. F., et al. . (2016). Sialomes and mialomes: A systems-biology view of tick tissues and tick–host interactions. Trends Parasitol 32, 242–254. doi: 10.1016/J.PT.2015.10.002 PubMed DOI PMC

Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. (2017). Protease inhibitors in tick saliva: The role of serpins and cystatins in tick-host-pathogen interaction. Front. Cell. Infect Microbiol. 7. doi: 10.3389/FCIMB.2017.00216/BIBTEX PubMed DOI PMC

Consortium TU (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515. doi: 10.1093/nar/gky1049 PubMed DOI PMC

Cramaro W. J., Revets D., Hunewald O. E., Sinner R., Reye A. L., Muller C. P. (2015). Integration of ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genomics 16, 871. doi: 10.1186/s12864-015-1981-7 PubMed DOI PMC

Cupp E. W. (1991). Biology of ticks. Vet Clinics North America: Small Anim. Practice 21, 1–26. doi: 10.1016/S0195-5616(91)50001-2 PubMed DOI

de La Fuente J., Estrada-Pena A., Venzal J. M., Kocan K. M., Sonenshine D. E. (2008). Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946. doi: 10.2741/3200 PubMed DOI

Django Software Foundation (2019). Django.

Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. . (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15. doi: 10.1093/BIOINFORMATICS/BTS635 PubMed DOI PMC

Francischetti I. M. B., Pham V. M., Mans B. J., Andersen J. F., Mather T. N., Lane R. S., et al. . (2005). The transcriptome of the salivary glands of the female western black-legged tick ixodes pacificus (Acari: Ixodidae). Insect Biochem. Mol. Biol. 35, 1142–1161. doi: 10.1016/J.IBMB.2005.05.007 PubMed DOI PMC

Francischetti I. M. B., Sa-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. C. (2009). The role of saliva in tick feeding. Front. Biosci. (Landmark Ed) 14, 2051–2088. doi: 10.2741/3363 PubMed DOI PMC

Fu L., Niu B., Zhu Z., Wu S., Li W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics. 28, 3150–3152. doi: 10.1093/bioinformatics/bts565 PubMed DOI PMC

Garcia G. R., Chaves Ribeiro J. M., Maruyama S. R., Gardinassi L. G., Nelson K., Ferreira B. R., et al. . (2020). A transcriptome and proteome of the tick rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci. Rep. 10, 1–23. doi: 10.1038/s41598-020-69793-3 PubMed DOI PMC

Götz S., García-Gómez J. M., Terol J., Williams T. D., Nagaraj S. H., Nueda M. J., et al. . (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. doi: 10.1093/NAR/GKN176 PubMed DOI PMC

Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. . (2011). Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat. Biotechnol. 29, 644. doi: 10.1038/NBT.1883 PubMed DOI PMC

Gray J. S., Dautel H., Estrada-Peña A., Kahl O., Lindgren E. (2009). Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis 2009, 1–12. doi: 10.1155/2009/593232 PubMed DOI PMC

Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. . (2016). Genomic insights into the ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7, 1–13. doi: 10.1038/ncomms10507 PubMed DOI PMC

Hackenberg M., Langenberger D., Schwarz A., Erhart J., Kotsyfakis M. (2017). In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. RNA. 23, 1259–1269. doi: 10.1261/RNA.061168.117 PubMed DOI PMC

Jia N., Wang J., Shi W., Du L., Sun Y., Zhan W., et al. . (2020). Large-Scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell. 182, 1328–1340.e13. doi: 10.1016/J.CELL.2020.07.023 PubMed DOI

Jmel M. A., Aounallah H., Bensaoud C., Mekki I., Chmelař J., Faria F., et al. . (2021). Insights into the role of tick salivary protease inhibitors during ectoparasite–host crosstalk. Int. J. Mol. Sci. 22, 892. doi: 10.3390/IJMS22020892 PubMed DOI PMC

Jones P., Binns D., Chang H. Y., Fraser M., Li W., McAnulla C., et al. . (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics. 30, 1236. doi: 10.1093/BIOINFORMATICS/BTU031 PubMed DOI PMC

Käll L., Krogh A., Sonnhammer E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the phobius web server. Nucleic Acids Res. 35. doi: 10.1093/nar/gkm256 PubMed DOI PMC

Karim S., Ribeiro J. M. C. (2015). An insight into the sialome of the lone star tick, amblyomma americanum, with a glimpse on its time dependent gene expression. PloS One 10, e0131292. doi: 10.1371/JOURNAL.PONE.0131292 PubMed DOI PMC

Kazimírová M., Štibrániová I. (2013). Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Front. Cell. Infect Microbiol. 4. doi: 10.3389/FCIMB.2013.00043/BIBTEX PubMed DOI PMC

Kemp D. H., Stone B. F., Binnington K. C. (1982). Tick attachment and feeding: Role of the mouthparts, feeding apparatus, salivary gland secretions and the host response. Physiol. Ticks, 119–168. doi: 10.1016/B978-0-08-024937-7.50009-3 DOI

Kotsarenko K., Vechtova P., Hammerova Z., Langova N., Malinovska L., Wimmerova M., et al. . (2020). Newly identified DNA methyltransferases of ixodes ricinus ticks. Ticks Tick Borne Dis. 11. doi: 10.1016/J.TTBDIS.2019.101348 PubMed DOI

Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J. M. C. (2015). Tissue- and time-dependent transcription in ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 5, 1–10. doi: 10.1038/srep09103 PubMed DOI PMC

Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580. doi: 10.1006/jmbi.2000.4315 PubMed DOI

Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC

Lattová E., Straková P., Pokorná-Formanová P., Grubhoffer L., Bell-Sakyi L., Zdráhal Z., et al. . (2020). Comprehensive n-glycosylation mapping of envelope glycoprotein from tick-borne encephalitis virus grown in human and tick cells. Sci. Rep. 10, 1–10. doi: 10.1038/s41598-020-70082-2 PubMed DOI PMC

Li B., Dewey C. N. (2011). RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinf. 12, 323. doi: 10.1186/1471-2105-12-323 PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. . (2009). The sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078–2079. doi: 10.1093/BIOINFORMATICS/BTP352 PubMed DOI PMC

Luca F., Perry G. H., di Rienzo A. (2010). Evolutionary adaptations to dietary changes. Annu. Rev. Nutr. 30, 291–314. doi: 10.1146/ANNUREV-NUTR-080508-141048 PubMed DOI PMC

Marín-Menguiano M., Moreno-Sánchez I., Barrales R. R., Fernández-Álvarez A. (2019). Ibeas JI. n-glycosylation of the protein disulfide isomerase Pdi1 ensures full ustilago maydis virulence. PloS Pathog. 15. doi: 10.1371/JOURNAL.PPAT.1007687 PubMed DOI PMC

Mulenga A., Kim T., Ibelli A. M. G. (2013). Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation. Insect Mol. Biol. 22, 306–319. doi: 10.1111/IMB.12024 PubMed DOI PMC

Narasimhan S., Booth C. J., DePonte K., Wu M. J., Liang X., Mohanty S., et al. . (2019). Host-specific expression of ixodes scapularis salivary genes. Ticks Tick Borne Dis. 10, 386–397. doi: 10.1016/J.TTBDIS.2018.12.001 PubMed DOI

Narasimhan S., DePonte K., Marcantonio N., Liang X., Royce T. E., Nelson K. F., et al. . (2007). Immunity against ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs borrelia transmission. PloS One 2, e451. doi: 10.1371/JOURNAL.PONE.0000451 PubMed DOI PMC

Nueda M. J., Tarazona S., Conesa A. (2014). Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 30, 2598. doi: 10.1093/BIOINFORMATICS/BTU333 PubMed DOI PMC

Nuttall P. A. (2019). Wonders of tick saliva. Ticks Tick-borne Dis 10, 470–481. doi: 10.1016/J.TTBDIS.2018.11.005 PubMed DOI

Perner J., Kropáčková S., Kopáček P., Ribeiro J. M. C. (2018). Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PloS Negl. Trop. Dis 12, e0006410. doi: 10.1371/JOURNAL.PNTD.0006410 PubMed DOI PMC

Pham M., Underwood J., Chávez A. S. O. (2021). Changing the recipe: Pathogen directed changes in tick saliva components. Int. J. Environ. Res. Public Health 18, 1806. doi: 10.3390/IJERPH18041806 PubMed DOI PMC

Ribeiro J. M. C., Mans B. J. (2020). TickSialoFam (TSFam): A database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell. Infect Microbiol. 10. doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC

Robinson M. D., McCarthy D. J., Smyth G. K. (2010). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26, 139. doi: 10.1093/BIOINFORMATICS/BTP616 PubMed DOI PMC

Robinson M. D., Oshlack A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 1–9. doi: 10.1186/GB-2010-11-3-R25/FIGURES/3 PubMed DOI PMC

Rosendale A. J., Dunlevy M. E., McCue M. D., Benoit J. B. (2019). Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol. Ecol. 28, 49–65. doi: 10.1111/MEC.14949 PubMed DOI

Schwarz A., von Reumont B. M., Erhart J., Chagas A. C., Ribeiro J. M. C., Kotsyfakis M. (2013). De novo ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 27, 4745–4756. doi: 10.1096/FJ.13-232140 PubMed DOI PMC

Seppey M., Manni M., Zdobnov E. M. (2019). BUSCO: Assessing genome assembly and annotation completeness. Methods Mol. Biol., 1962, 227–245. doi: 10.1007/978-1-4939-9173-0_14 PubMed DOI

Suzek B. E., Wang Y., Huang H., McGarvey P. B., Wu C. H. (2015). UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 31, 926. doi: 10.1093/BIOINFORMATICS/BTU739 PubMed DOI PMC

Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. . (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131 PubMed DOI PMC

Tan A. W. L., Francischetti I. M. B., Slovak M., Kini R. M., Ribeiro J. M. C. (2015). Sexual differences in the sialomes of the zebra tick, rhipicephalus pulchellus. J. Proteomics 117, 120–144. doi: 10.1016/J.JPROT.2014.12.014 PubMed DOI PMC

Tirloni L., Lu S., Calvo E., Sabadin G., di Maggio L. S., Suzuki M., et al. . (2020). Integrated analysis of sialotranscriptome and sialoproteome of the brown dog tick rhipicephalus sanguineus (s.l.): Insights into gene expression during blood feeding. J. Proteomics 229. doi: 10.1016/J.JPROT.2020.103899 PubMed DOI PMC

Trager W. (1939). Acquired immunity to ticks. J. Parasitol 25, 57. doi: 10.2307/3272160 DOI

Varoquaux N., Purdom E. (2020). A pipeline to analyse time-course gene expression data. F1000Res. 9, 1447. doi: 10.12688/F1000RESEARCH.27262.1 DOI

Vechtova P., Sterbova J., Sterba J., Vancova M., Rego R. O. M., Selinger M., et al. . (2018). A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasites Vectors 11, 1–27. doi: 10.1186/S13071-018-3062-7 PubMed DOI PMC

Wang M., Zhao Y., Zhang B. (2015). Efficient test and visualization of multi-set intersections. Sci. Rep. 5. doi: 10.1038/SREP16923 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...