Trophic Position of the Species and Site Trophic State Affect Diet Niche and Individual Specialization: From Apex Predator to Herbivore
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
101074458 - Life Predator
European Commission
CZ.02.1.01/0.0/0.0/16_025/0007417
European Union
QK1920011
Ministry of Agriculture
RP21 - Land conservation and restoration
Czech Academy of Sciences
TJ02000012
Technology Agency of the Czech Republic
No. RP20-Water for life, and
Czech Academy of Sciences
PubMed
37626997
PubMed Central
PMC10452534
DOI
10.3390/biology12081113
PII: biology12081113
Knihovny.cz E-resources
- Keywords
- aquatic food web, freshwater ecosystem, isotopic half-life, niche width, stable isotope analysis,
- Publication type
- Journal Article MeSH
Intra-species variability in isotopic niches, specifically isotopic total niche width (ITNW), isotopic individual niche width (IINW), and isotopic individual specialization (IIS), was studied using an innovative approach without sacrificing the vertebrates. Stable isotopes (δ13C, δ15N) in four body tissues differing in isotopic half-life were analyzed from four freshwater fish species representing different trophic positions. ITNW was widest for the apex predator (European catfish) and narrowest for the obligate predator (Northern pike). IINW exhibited a polynomial trend for the European catfish, Northern pike, and Eurasian perch (mesopredator), decreasing with body mass and increasing again after exceeding a certain species-dependent body mass threshold. Thus, for ectotherms, apex predator status is linked rather to its size than to the species. In herbivores (rudd), IINW increased with body mass. The IIS of predators negatively correlated with site trophic state. Therefore, eutrophication can significantly change the foraging behavior of certain species. We assume that the observed trends will occur in other species at similar trophic positions in either aquatic or terrestrial systems. For confirmation, we recommend conducting a similar study on other species in different habitats.
See more in PubMed
Owen-Smith N., Fryxell J.M., Merrill E.H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:2267–2278. PubMed PMC
DeSantis L.R.G., Pardi M.I., Du A., Greshko M.A., Yann L.T., Hulbert R.C., Louys J. Global long-term stability of individual dietary specialization in herbivorous mammals. Proc. R. Soc. B. 2022;289:20211839. doi: 10.1098/rspb.2021.1839. PubMed DOI PMC
Van Valen L. Morphological Variation and Width of Ecological Niche. Am. Nat. 1965;99:377–389. doi: 10.1086/282379. DOI
Urton E.J.M., Hobson K.A. Intrapopulation variation in gray wolf isotope (δ15 N and δ13C) profiles: Implications for the ecology of individuals. Oecologia. 2005;145:317–326. PubMed
Woo K.J., Elliott K.H., Davidson M., Gaston A.J., Davoren G.K. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J. Anim. Ecol. 2008;77:1082–1091. doi: 10.1111/j.1365-2656.2008.01429.x. PubMed DOI
Roberts P., Stewart B.A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2018;2:542–550. doi: 10.1038/s41562-018-0394-4. PubMed DOI
Quevedo M., Svanbäck R., Eklöv P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology. 2009;90:2263–2274. doi: 10.1890/07-1580.1. PubMed DOI
Matich P., Heithaus M.R., Layman C.A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 2011;80:294–305. doi: 10.1111/j.1365-2656.2010.01753.x. PubMed DOI
Vejřík L., Vejříková I., Blabolil P., Eloranta A.P., Kočvara L., Peterka J., Sajdlová Z., Chung S.H.T., Šmejkal M., Kiljunen M., et al. European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci. Rep. 2017;7:5970. doi: 10.1038/s41598-017-16169-9. PubMed DOI PMC
Kapuscinski K.L., Farrell J.M., Wilkinson M.A. Feeding patterns and population structure of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Cypriniformes, Cyprinidae), in Buffalo Harbor (Lake Erie) and the upper Niagara River. Hydrobiologia. 2012;693:169–181.
Vejříková I., Vejřík L., Syväranta J., Kiljunen M., Čech M., Blabolil P., Vašek M., Sajdlová Z., Chung S.H.T., Šmejkal M., et al. Distribution of herbivorous fish is frozen by low temperature. Sci. Rep. 2016;6:39600. doi: 10.1038/srep39600. PubMed DOI PMC
Bolnick D.I., Ingram T., Stutz W.E., Snowberg L., Lau O.L., Paull J. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B Biol. Sci. 2010;277:1789–1797. doi: 10.1098/rspb.2010.0018. PubMed DOI PMC
Vander Zanden H.B., Bjorndal K.A., Reich K.J., Bolten A.B. Individual specialists in a generalist population: Results from a long-term stable isotope series. Biol. Lett. 2010;6:711–714. PubMed PMC
Pyke G.H., Pulliam H.R., Charnov E.L. Optimal Foraging: A Selective Review of Theory and Tests. Q. Rev. Biol. 1977;52:137–154.
Barabás G., D’Andrea R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 2016;19:977–986. doi: 10.1111/ele.12636. PubMed DOI
Araújo M.S., Bolnick D.I., Layman C.A. The ecological causes of individual specialisation. Ecol. Lett. 2011;14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x. PubMed DOI
Belovsky G.E., Jordan P.A. The time-energy budget of a moose. Theor. Popul. Biol. 1978;14:76–104. doi: 10.1016/0040-5809(78)90006-0. PubMed DOI
Schoener T.W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 1971;2:369–404. doi: 10.1146/annurev.es.02.110171.002101. DOI
Sol D., Elie M., Marcoux M., Chrostovsky E., Porcher C., Lefebvre L. Ecological mechanisms of a resource polymorphism in Zenaida Doves of Barbados. Ecology. 2005;86:2397–2407. doi: 10.1890/04-1136. DOI
Stephens D.W., Krebs J.R. Foraging Theory. Princeton University Press; Princeton, NJ, USA: 1986.
Araújo M.S., Gonzaga M.O. Individual specialisation in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae) Behav. Ecol. Sociobiol. 2007;61:1855–1863. doi: 10.1007/s00265-007-0425-z. DOI
Svanbäck R., Persson L. Individual diet specialisation, niche width and population dynamics: Implications for trophic polymorphisms. J. Anim. Ecol. 2004;73:973–982.
Svanbäck R., Eklöv P., Fransson R., Holmgren K. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos. 2008;117:114–124. doi: 10.1111/j.2007.0030-1299.16267.x. DOI
Knudsen R., Amundsen P.A., Primicerio R., Klemetsen A., Sorensen P. Contrasting niche-based variation in trophic morphology within Arctic charr populations. Evol. Ecol. Res. 2007;9:1005–1021.
Bolnick D.I., Amarasekare P., Araújo M.S., Bürger R., Levine J., Novak M., Rudolf V.H., Schreiber S.J., Urban M.C., Vasseur D.A., et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 2011;26:183–192. PubMed PMC
Prati S., Henriksen E.H., Smalås A., Knudsen R., Klemetsen A., Sánchez-Hernández J., Amundsen P.A. The effect of inter- and intraspecific competition on individual and population niche widths: A four-decade study on two interacting salmonids. Oikos. 2021;130:1679–1691.
Eklöv P., Svanbäck R. Predation risk influences adaptive morphological variation in fish populations. Am. Nat. 2006;167:440–452. doi: 10.1086/499544. PubMed DOI
Jacobson P.C., Stefan H.G., Pereira D.L. Coldwater fish oxythermal habitat in Minnesota lakes: Influence of total phosphorus, July air temperature, and relative depth. Can. J. Fish. Aquat. 2010;67:2002–2013.
North R.P., North R.L., Livingstone D.M., Koster O., Kipfer R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: Consequences of a climate regime shift. Glob. Chang. Biol. 2014;20:811–823. PubMed
Kerches-Rogeri N., Niebuhr B.B., Muylaert R.L., Mello M.A.L. Individual specialization in the use of space by frugivorous bats. J. Anim. Ecol. 2020;89:2584–2595. doi: 10.1111/1365-2656.13339. PubMed DOI
Sheppard C.E., Inger R., McDonald R.A., Barker S., Jackson A.L., Thompson F.J., Vitikainen E.I., Cant M.A., Marshall H.H. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 2018;21:665–673. doi: 10.1111/ele.12933. PubMed DOI PMC
Robbins C.T., Felicetti L.A., Sponheimer M. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia. 2005;144:534–540. PubMed
Hette-Tronquart N. Isotopic niche is not equal to trophic niche. Ecol. Lett. 2019;22:1987–1989. doi: 10.1111/ele.13218. PubMed DOI
Vejřík L., Vejříková I., Kočvara L., Blabolil P., Peterka J., Sajdlová Z., Jůza T., Šmejkal M., Kolařík T., Bartoň D., et al. The pros and cons of the invasive freshwater apex predator, European catfish Silurus glanis, and powerful angling technique for its population control. J. Environ. Manag. 2019;241:374–382. PubMed
Bartoň D., Brabec M., Sajdlová Z., Souza A., Duras J., Kortan D., Blabolil P., Vejřík L., Kubečka J., Šmejkal M. Hydropeaking causes spatial shifts in a reproducing rheophilic fish. Sci. Total Environ. 2022;806:150649. doi: 10.1016/j.scitotenv.2021.150649. PubMed DOI
Vejříková I., Eloranta A.P., Vejřík L., Šmejkal M., Čech M., Sajdlová Z., Frouzova J., Kiljunen M., Peterka J. Macrophytes shape trophic niche variation among generalist fishes. PLoS ONE. 2017;12:e0177114. doi: 10.1371/journal.pone.0177114. PubMed DOI PMC
Stephen M.T., Crowther T.W. Predicting rates of isotopic turnover across the animal kingdom: A synthesis of existing data. J. Anim. Ecol. 2015;84:861–870. PubMed
Vašek M., Vejřík L., Vejříková I., Šmejkal M., Baran R., Muška M., Kubečka J., Peterka J. Development of non-lethal monitoring of stable isotopes in asp (Leuciscus aspius): A comparison of muscle, fin and scale tissues. Hydrobiology. 2017;785:327–335.
France R.L. Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Can. J. Fish. Aquat. 1995;52:651–656.
Anderson C., Cabana G. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. J. N. Am. Benthol. Soc. 2007;26:273–285.
Post D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 2002;83:703–718.
Vander Zanden M.J., Shuter B.J., Lester N., Rasmussen J.B. Patterns of food chain length in lakes: A stable isotope study. Am. Nat. 1999;154:406–416. PubMed
Olsson K., Stenroth P., Nyström P., Granéli W. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish? Freshw. Biol. 2009;54:1731–1740.
Layman C.A., Arrington D.A., Montaña C.G., Post D.M. Can stable isotope ratios provide quantitative measures of trophic diversity within food webs? Ecology. 2007;88:42–48. PubMed
Jackson A.L., Inger R., Parnell A.C., Bearhop S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011;80:595–602. PubMed
Bolnick D.I., Svanbäck R., Fordyce J.A., Yang L.H., Davis J.M., Hulsey C.D., Forister M.L. The Ecology of Individuals: Incidence and Implications of Individual Specialization. Am. Nat. 2003;161:1–28. PubMed
Bolnick D.I. Ind Spec1. Center for Population Biology Store Hall University of California; Davis, CA, USA: 2002.
Bates D., Maechler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48.
R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 7 August 2023)]. Available online: https://www.R-project.org.
Allouche O., Kalyuzhny M., Moreno-Rueda G., Pizarro M., Kadmon K. Area–heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl. Acad. Sci. USA. 2012;109:17495–17500. doi: 10.1073/pnas.1208652109. PubMed DOI PMC
Forsman A., Tibblin P., Berggren H., Nordahl O., Koch-Smidth P., Larsson P. Pike Esox lucius as an emerging model organism for studies in ecology and evolutionary biology: A review. J. Fish. Biol. 2015;87:472–479. PubMed PMC
Prugh R.L., Stoner C.J., Epps C.W., Bean W.T., Ripple W.J., Laliberte A.S., Brashares J.S. The rise of the mesopredator. BioScience. 2009;59:779–791.
Ripple W.J., Estes J., Beschta R., Wilmers C., Ritchie E., Hebblewhite M., Berger J., Elmhagen B., Letnic M., Nelson M.P. Status and ecological effects of the world’s largest carnivores. Science. 2014;343:1241484. PubMed
Kozlowski J., Uchmanski J. Optimal individual growth and reproduction in perennial species with indeterminate growth. Evol. Ecol. 1987;1:214–230. doi: 10.1007/BF02067552. DOI
Brooker R.M., Munday P.L., Brandl S.J., Jones G.P. Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs. 2014;33:891–896. doi: 10.1007/s00338-014-1197-3. DOI
Orr H.A., Unckless R.L. Population extinction and the genetics of adaptation. Am. Nat. 2008;172:160–169. PubMed
Foote A.D., Newton J., Piertney S.B., Willerslev E., Gilbert M.T.P. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Mol. Ecol. 2009;18:5207–5217. doi: 10.1111/j.1365-294X.2009.04407.x. PubMed DOI
Werner E.E., Gilliam J.F. The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Evol. Syst. 1984;15:393–425. doi: 10.1146/annurev.es.15.110184.002141. DOI
Rosenblatt A.E., Nifong J.C., Heithaus M.R., Mazzotti F.J., Cherkiss M.S., Jeffery B.M., Elsey R.M., Decker R.A., Silliman B.R., Guillette L.J. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia. 2015;178:5–16. PubMed
Nurminen L., Horppila J., Lappalainen J., Malinen T. Implications of rudd (Scardinius erythrophthalmus) herbivory on submerged macrophytes in a shallow eutrophic lake. Hydrobiology. 2003;506–509:511–518. doi: 10.1023/B:HYDR.0000008577.16934.a9. DOI
Elton C.S. Animal Ecology. Sidgewick & Jackson; London, UK: 1927.
Matthews B., Marchinko K.B., Bolnick D.I., Mazumder A. Specialisation of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology. 2010;91:1025–1034. PubMed
Hughes A.R., Inouye B.D., Johnson M.T.J., Underwood N., Vellend M. Ecological consequences of genetic diversity. Ecol. Lett. 2008;11:609–623. doi: 10.1111/j.1461-0248.2008.01179.x. PubMed DOI
Heady W.N., Moore J.W. Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia. 2013;172:21–34. PubMed
Wakefield E.D., Cleasby I.R., Bearhop S., Bodey T.W., Davies R.D., Miller P.I., Newton J., Votier S.C., Hamer K.C. Long-term individual foraging site fidelity—Why some gannets don’t change their spots. Ecology. 2015;96:3058–3074. doi: 10.1890/14-1300.1. PubMed DOI
Říha M., Gjelland K.O., Děd V., Eloranta A.P., Rabaneda Bueno R., Baktoft H., Vejřík L., Vejříková I., Draštík V., Šmejkal M., et al. Contrasting structural complexity differentiate hunting strategy in an ambush apex predator. Sci. Rep. 2021;11:17472. PubMed PMC