Atmospheric Hydroxyl Radical Reaction Rate Coefficient and Total Environmental Lifetime of α-Endosulfan

. 2023 Oct 24 ; 57 (42) : 15999-16005. [epub] 20231013

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37831888

Endosulfan is a persistent organochlorine pesticide that was globally distributed before it was banned and continues to cycle in the Earth system. The chemical kinetics of the gas-phase reaction of α-endosulfan with the hydroxyl radical (OH) was studied by means of pulsed vacuum UV flash photolysis and time-resolved resonance fluorescence (FP-RF) as a function of temperature in the range of 348-395 K and led to a second-order rate coefficient kOH = 5.8 × 10-11 exp(-1960K/T) cm3 s-1 with an uncertainty range of 7 × 10-12 exp(-1210K/T) to 4 × 10-10 exp(-2710K/T) cm3 s-1. This corresponds to an estimated photochemical atmospheric half-life in the range of 3-12 months, which is much longer than previously assumed (days to weeks). Comparing the atmospheric concentrations observed after the global ban of endosulfan with environmental multimedia model predictions, we find that photochemical degradation in the atmosphere is slower than the model-estimated biodegradation in soil or water and that the latter limits the total environmental lifetime of endosulfan. We conclude that the lifetimes typically assumed for soil and aquatic systems are likely underestimated and should be revisited, in particular, for temperate and warm climates.

Zobrazit více v PubMed

Mackay D.; Wania F. Transport of Contaminants to the Arctic: Partitioning, Processes and Models. Sci. Total Environ. 1995, 160–161, 25–38. 10.1016/0048-9697(95)04342-X. DOI

Semeena V. S.; Lammel G. The Significance of the Grasshopper Effect on the Atmospheric Distribution of Persistent Organic Substances. Geophys. Res. Lett. 2005, 32, L0780410.1029/2004GL022229. DOI

DeLorenzo M. E.; Taylor L. A.; Lund S. A.; Pennington P. L.; Strozier E. D.; Fulton M. H. Toxicity and Bioconcentration Potential of the Agricultural Pesticide Endosulfan in Phytoplankton and Zooplankton. Arch. Environ. Contam. Toxicol. 2002, 42, 173–181. 10.1007/s00244-001-0008-3. PubMed DOI

Wan M. T.; Kuo J. N.; Buday C.; Schroeder G.; van Aggelen G.; Pasternak J. Toxicity of α- and β-Endosulfan and their Formulated and Degradation Products to Daphnia Magna, Hyalella Azteca, Oncorhynchus Mykiss, Oncorhynchus Kisutch, and Biological Implications in Streams. Environ. Toxicol. Chem. 2005, 24, 1146–1154. PubMed

UBA , 2008. Preliminary risk profile of endosulfan. German Federal Environment Agency, Berlin Germany. URL: unece.org/fileadmin/DAM/env/documents/2008/eb/EB/endosulfan_RA%20dossier_proposal%20for%20submission%20to%20UNECE%20POP%20Protocol.pdf (accessed 2023–04–23).

UNEP , 2009. Draft Risk Management Evaluation on Endosulfan. Document UNEP/POPS/POPRC.5/INF/9, UNEP Stockholm Convention, 54 pp. URL: chm.pops.int.

Briz V.; Molina-Molina J. M.; Sánchez-Redondo S.; Fernández M. F.; Grimalt J. O.; Olea N.; Rodríguez-Farré E.; Suñol C. Differential Estrogenic Effects of the Persistent Organochlorine Pesticides Dieldrin, Endosulfan, and Lindane in Primary Neuronal Cultures. Toxicol. Sci. 2011, 120, 413–427. 10.1093/toxsci/kfr019. PubMed DOI

Ren A.; Qiu X.; Jin L.; Ma J.; Li X. W.; Zhang L.; Zhu H. P.; Finnell R. H.; Zhu T. Association of Selected Persistent Organic Pollutants in the Placenta with the Risk of Neural Tube Defects. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 12770–12775. 10.1073/pnas.1105209108. PubMed DOI PMC

BCPC . The Pesticide Manual; British Crop Protection Council: Alton, UK; 2012; p 1439.

Li L.; Chen C. K.; Li D. S.; Breivik K.; Abbasi G.; Li Y. F. What do we Know About the Production and Release of Persistent Organic Pollutants in the Global Environment?. Environ. Sci. Adv. 2023, 2, 55.10.1039/D2VA00145D. DOI

Scholtz M. T.; Voldner E.; van Heysta B. J.; McMillan A. C.; Pattey E. A pesticide emission model (PEM) Part II: model evaluation. Atmos. Environ. 2002, 36, 5015–5024. 10.1016/S1352-2310(02)00571-X. DOI

Jia H. L.; Sun Y. Q.; Li Y. F.; Tian C. G.; Wang D. G.; Yang M.; Ding Y. S.; Ma J. M. Endosulfan in China. 2. Emissions and residues. Environ. Sci. Pollut. Res. 2009, 16, 302–311. 10.1007/s11356-009-0125-5. PubMed DOI

Halsall C. J. Investigating the Occurrence of Persistent Organic Pollutants (POPs) in the Arctic: Their Atmospheric Behaviour and Interaction with the Seasonal Snow Pack. Environ. Pollut. 2004, 128, 163–175. 10.1016/j.envpol.2003.08.026. PubMed DOI

Hermanson M. H.; Isaksson E.; Teixeira C.; Muir D. C. G.; Compher K. M.; Li Y. F.; Igarashi M.; Kamiyama K. Current Use and Legacy Pesticide History in the Austfonna Ice Cap, Svalbard, Norway. Environ. Sci. Technol. 2005, 39, 8163–8169. 10.1021/es051100d. PubMed DOI

Li Y. F.; Macdonald R. W. Sources and Pathways of Selected Organochlorine Pesticides to the Arctic and the Efficiency of Pathway Divergence on HCH Trends in Biota: a Review. Sci. Total Environ. 2005, 342, 87–106. 10.1016/j.scitotenv.2004.12.027. PubMed DOI

Shen L.; Wania F.; Ying D. L.; Teixeira C.; Muir D. C. G.; Bidleman T. F. Atmospheric Distribution and Long-Range Transport Behavior of Organochlorine Pesticides in North America. Environ. Sci. Technol. 2005, 39, 409–420. 10.1021/es049489c. PubMed DOI

Weber J.; Crispin J.; Halsall; Muir D.; Teixeira C.; Small J.; Solomon K.; Hermanson M.; Hung H.; Bidleman T. Endosulfan, a Global Pesticide: A Review of its Fate in the Environment and Occurrence in the Arctic. Sci. Total Environ. 2010, 408, 2966–2984. 10.1016/j.scitotenv.2009.10.077. PubMed DOI

Salamova A.; Venier M.; Hites R. Revised Temporal Trends of Persistent Organic Pollutant Concentrations in Air around the Great Lakes. Environ. Sci. Technol. Lett. 2015, 2, 20–25. 10.1021/acs.estlett.5b00003. PubMed DOI

Gao Y.; Zheng H.; Xia Y.; Cai M. Global scale distribution, seasonal changes and long-range transport potentiality of endosulfan in the surface seawater and air. Chemosphere 2020, 260, 12763410.1016/j.chemosphere.2020.127634. PubMed DOI

Schuster J. K.; Harner T.; Eng A.; Rauert C.; Su K.; Hornbuckle K. C.; Johnson C. W. Tracking POPs in Global Air from the First 10 Years of the GAPS Network (2005 to 2014). Environ. Sci. Technol. 2021, 55, 9479–9488. 10.1021/acs.est.1c01705. PubMed DOI PMC

Wong F.; Hung H.; Dryfhout-Clark D.; Aas W.; Bohlin-Nizzetto P.; Breivik K.; Nerentorp Mastromonaco M.; Brorström-Lundén E.; Olafsdottír K.; Sigurdsson A.; Vorkamp K.; Bossi R.; Skov H.; Hakola H.; Barresi E.; Sverko E.; Fellin P.; Li H.; Vlasenko A.; Zapevalov M.; Samsonov D.; Wilson S. Time Trends of Persistent Organic Pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic Air from 25 years of Monitoring. Sci. Total Environ. 2021, 775, 14510910.1016/j.scitotenv.2021.145109. PubMed DOI

Hinckley D. A.; Bidleman T. F.; Foreman W. T.; Tuschall J. R. Determination of Vapor Pressures for Nonpolar and Semipolar Organic Compounds from Gas Chromatographic Retention Data. J. Chem. Eng. Data 1990, 35, 232–237. 10.1021/je00061a003. DOI

Shoeib M.; Harner T. Using Measured Octanol-Air Partition Coefficients to Explain Environmental Partitioning of Organochlorine Pesticides. Environ. Toxicol. Chem. 2002, 21, 984–990. 10.1002/etc.5620210513. PubMed DOI

Shen L.; Wania F. Compilation, Evaluation, and Selection of Physical–Chemical Property Data for Organochlorine Pesticides. J. Chem. Eng. Data 2005, 50, 742–768. 10.1021/je049693f. DOI

Odabasi M.; Cetin B. Determination of Octanol-air Partition Coefficients of Organochlorine Pesticides (OCPs) as a Function of Temperature: Application to Air-Soil Exchange. J. Environ. Manag. 2012, 113, 432–439. 10.1016/j.jenvman.2012.10.010. PubMed DOI

Tuduri L.; Harner T.; Blanchard P.; Li Y. F.; Poissant L.; Waite D.; Murphy C.; Belzer W. A Review of Currently Used Pesticides (CUPs) in Canadian Air and Precipitation: Part I: Lindane and Endosulfans. Atmos. Environ. 2006, 40, 1563–1578. 10.1016/j.atmosenv.2005.11.034. DOI

Antonious G. F.; Byers M. E.; Snyder-Conn E. Residues and Fate of Endosulfan on Field Grown Pepper and Tomato. Pestic. Sci. 1998, 54, 61–67.

Rice C. P.; Nochetto C. B.; Zara P. Volatilization of Trifluralin, Atrazine, Metolachlor, Chlorpyrifos, alpha-Endosulfan, and beta-Endosulfan from Freshly Tilled Soil. J. Agric. Food. Chem. 2002, 50, 4009–4017. 10.1021/jf011571t. PubMed DOI

Walse S. S.; Shimizu K. D.; Ferry J. L. Surface-Catalyzed Transformations of Aqueous Endosulfan. Environ. Sci. Technol. 2002, 36, 4846–4853. 10.1021/es0256257. PubMed DOI

Walse S. S.; Scott G. I.; Ferry J. L. Stereoselective Degradation of Aqueous Endosulfan in Modular Estuarine Mesocosms: Formation of Endosulfan γ-Hydroxycarboxylate. J. Environ. Monit. 2003, 5, 373–379. 10.1039/B212165D. PubMed DOI

Schmidt W. F.; Hapeman C. J.; McConnell L. L.; Mookherji S.; Rice C. P.; Nguyen J. K.; Qin J.; Lee H.; Chao K.; Kim M. S. Temperature-Dependent Raman Spectroscopic Evidence of and Molecular Mechanism for Irreversible Isomerization of β-Endosulfan to α-Endosulfan. J. Agric. Food Chem. 2014, 62, 2023–2030. 10.1021/jf404404w. PubMed DOI

UNEP , 2010. Draft Risk Management Evaluation on Endosulfan. Document UNEP/POPS/POPRC.5/10, UNEP Stockholm Convention, 20 pp. URL: chm.pops.int (accessed 2023–04–25).

Rao D. M. R.; Murthy A. S. Persistence of Endosulfan in Soils. J. Agric. Food Chem. 1980, 28, 1099–1101. 10.1021/jf60232a012. DOI

Navarro S.; Barba A.; Segura J. C.; Oliva J. Disappearance of Endosulfan Residues from Seawater and Sediment under Laboratory Conditions. Pest Manag. Sci. 2000, 56, 849–854. 10.1002/1526-4998(200010)56:10<849::AID-PS215>3.0.CO;2-1. DOI

Ghadiri H.; Rose C. W. Degradation of Endosulfan in a Clay Soil from Cotton Farms of Western Queensland. J. Environ. Manag. 2001, 62, 155–169. 10.1006/jema.2001.0428. PubMed DOI

Franklin J.; Atkinson R.; Howard P. H.; Orlando J. J.; Seigneur C.; Wallington T. J.; Zetzsch C.. Quantitative Determination of Persistence in Air. In Criteria for Persistence and Long-Range Transport of Chemicals in the Environment; Klecka G., Ed.; SETAC Press, 2000; pp 7–62.

USEPA , 2019. United States Environmental Protection Agency, Estimation Programs Interface Suite for Microsoft Windows, v 4.11, https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (accessed 2022–01–05).

Palm W. U.; Zetzsch C., 1991. Estimation of the Rate Constants for the Reaction of alpha- and beta-Endosulfan with OH Radicals by the Incremental Procedure of Atkinson. Unpublished project report to Hoechst AG, Fraunhofer-Institut für Toxikologie und Aerosolforschung, Hannover. AgrEvo Doc. No. A48681, Frankfurt/M., Germany.

Zetzsch C.; Elend M.; Knispel R.; Koch R.; Siese M.. Photochemisch-oxidativer Abbau von α-Endosulfan durch OH-Radikale. Unpublished project report to Hoechst AG, Fraunhofer-Institut für Toxikologie und Aerosolforschung, Hannover, AgrEvo Doc. No. A48146, Frankfurt/M., 1992.

Koch R.; Knispel R.; Elend M.; Siese M.; Zetzsch C. Consecutive Reactions of Aromatic-OH Adducts with NO, NO2 and O2: Benzene, Naphthalene, Toluene, m- and p-Xylene, Hexamethylbenzene, Phenol, m-Cresol and Aniline. Atmos. Chem. Phys. 2007, 7, 2057–2071. 10.5194/acp-7-2057-2007. DOI

Alarcon P.; Strekowski R.; Zetzsch C. Reversible Addition of the OH Radical to p-Cymene in the Gas Phase: Kinetic Analysis Assuming Formation of a Single Adduct. Phys. Chem. Chem. Phys. 2013, 15, 20105–20114. 10.1039/c3cp53040j. PubMed DOI

Boublik T.; Fried V.; Hala E.. The Vapour Pressures of Pure Substances; Elsevier: Amsterdam, 1984; p 626.

Verevkin S. P.; Zaitsau D. H., 2022. University of Rostock, Rostock, Germany, Personal Communication.

Sarafin R.Hoe 002671 (endosulfan), Hoe 052618 (α-endosulfan) and 052619 (β-endosulfan) – Vapour pressures, Report A 36734, (B) 153/87, Angewandte Physik/Analytisches Laboratorium; Hoechst AG: Frankfurt/M., Germany, 1987.

Zhang S.; Strekowski R.; Bosland L.; Monod A.; Zetzsch C. Kinetic Study of the Reaction of OH with CH2I2. Phys. Chem. Chem. Phys. 2011, 13, 11671–11677. 10.1039/c1cp20885c. PubMed DOI

Alarcón P.; Bohn B.; Zetzsch C. Kinetic and Mechanistic Study of the Reaction of OH Radicals with Methylated Benzenes: 1,4-Dimethyl-, 1,3,5-Trimethyl-, 1,2,4,5-, 1,2,3,5- and 1,2,3,4-Tetramethyl-, Pentamethyl-, and Hexamethylbenzene. Phys. Chem. Chem. Phys. 2015, 17, 13053–13065. 10.1039/C5CP00253B. PubMed DOI

Spivakovsky C. M.; Logan J. A.; Montzka S. A.; Balkanski Y. L.; Foreman-Fowler M.; Jones D. B. A.; Horowitz L. W.; Fusco A. C.; Brenninkmeijer C. A. M.; Prather M. J.; Wofsy S. C.; McElroy M. B. Three-Dimensional Climatological Distribution of Tropospheric OH: Update and Evaluation. J. Geophys. Res. 2000, 105, 8931.10.1029/1999JD901006. DOI

Klöpffer W.Verhalten und Abbau von Umweltchemikalien, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2013; p 612.

White K. B.; Kalina J.; Scheringer M.; Přibylová P.; Kukučka P.; Kohoutek J.; Prokeš R.; Klánová J. Temporal Trends of Persistent Organic Pollutants Across Africa after a Decade of MONET Passive Air Sampling. Environ. Sci. Technol. 2021, 55, 9413–9424. 10.1021/acs.est.0c03575. PubMed DOI

Hites R. A. Statistical Approach for Assessing the Stockholm Convention’s Effectiveness: Great Lakes Atmospheric Data. Environ. Sci. Technol. 2019, 53, 8585–8590. 10.1021/acs.est.9b02190. PubMed DOI

UNEP , 2019. Stockholm Convention, Register of specific exemptions. URL: https://chm.pops.int/Implementation/Exemptions/SpecificExemptions/TechnicalendosulfanRoSE/tabid/5037/Default.aspx (accessed 23–07–31).

Hogue C. Endosulfan banned worldwide. Chem. Eng. News 2011, 89, 15.

USEPA , 2016. Pesticides – Re-registration - Endosulfan Phase-Out, https://archive.epa.gov/pesticides/reregistration/web/html/endosulfan-agreement.html (accessed 2022–09–12).

USDA , 2022. US Dept. of Agriculture, National Agricultural Statistics Service, Quick Stats, URL: https://quickstats.nass.usda.gov/ (accessed 2022–10–22).

Singh S. P.; Guha S.; Bose P.; Kunnikuruvan S. Mechanism of the Hydrolysis of Endosulfan Isomers. J. Phys. Chem. A 2017, 121, 5156–5163. 10.1021/acs.jpca.7b02012. PubMed DOI

ECB . Technical Guidance Document in Support of The Commissions Directive 93/67/EEC on Risk Assessment for the Notified Substances and the Commission Regulation (EC) 1488/94 on Risk Assessment for Existing Substances; European Chemicals Bureau: Ispra, Italy, 1996.

Mackay D.Multimedia Environmental models – the Fugacity Approach, 2nd ed.; CRC Press: Boca Raton, USA, 2001; p 272.

Jia H. L.; Liu L. Y.; Sun Y. Q.; Sun B.; Wang D. G.; Su Y. S.; Kannan K.; Li Y. F. Monitoring and Modeling Endosulfan in Chinese Surface Soil. Environ. Sci. Technol. 2010, 44, 9279–9284. 10.1021/es102791n. PubMed DOI

Fang Y.; Nie Z. Q.; Die Q. Q.; Tia Y. J.; Liu F.; He J.; Huang Q. F. Spatial Distribution, Transport Dynamics, and Health Risks of Endosulfan at a Contaminated Site. Environ. Pollut. 2016, 216, 538–547. 10.1016/j.envpol.2016.06.006. PubMed DOI

Zhong G. C.; Xie Z. Y.; Cai M. H.; Möller A.; Sturm R.; Tang J. H.; Zhang G.; He J. F.; Ebinghaus R. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean. Environ. Sci. Technol. 2012, 46, 259–267. 10.1021/es202655k. PubMed DOI

Daly G. L.; Lei Y. D.; Teixeira C.; Muir D. C. G.; Wania F. Pesticides in western Canadian mountain air and soil. Environ. Sci. Technol. 2007, 41, 6020–6025. 10.1021/es070848o. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...