Cutaneous Hemangioma With Epithelioid Features Harboring TPM3/4::ALK Fusions : A Distinct Entity or a Molecular Variant of Epithelioid Hemangioma?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, kazuistiky
PubMed
40070162
DOI
10.1097/pas.0000000000002380
PII: 00000478-990000000-00486
Knihovny.cz E-zdroje
- Klíčová slova
- ALK, TPM3, TPM4, cutaneous hemangioma, epithelioid hemangioma,
- MeSH
- anaplastická lymfomová kináza * genetika MeSH
- dítě MeSH
- dospělí MeSH
- epiteloidní buňky * patologie MeSH
- fenotyp MeSH
- fúze genů MeSH
- hemangiom * genetika patologie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádorové biomarkery * genetika analýza MeSH
- nádory kůže * genetika patologie MeSH
- předškolní dítě MeSH
- tropomyosin * genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- ALK protein, human MeSH Prohlížeč
- anaplastická lymfomová kináza * MeSH
- nádorové biomarkery * MeSH
- TPM3 protein, human MeSH Prohlížeč
- TPM4 protein, human MeSH Prohlížeč
- tropomyosin * MeSH
Vascular neoplasms with epithelioid cytomorphology encompass a wide spectrum of benign and malignant lesions, including epithelioid hemangioma (EH), cutaneous epithelioid angiomatous nodule (CEAN), epithelioid hemangioendothelioma (EHE), and epithelioid angiosarcoma (EAS). Recently, the first case of a cutaneous hemangioma with epithelioid features harboring a TPM3::ALK fusion was reported. Herein, we report 4 additional cases, including 1 case with an alternate TPM4::ALK fusion, and expand on the clinicopathologic and molecular genetic features of these unusual vascular lesions. Including the previously reported case, 5 tumors occurred in 4 male and 1 female patients with a median age of 14 years (range: 2 to 38 y) and involved the shoulder region (2), the lower extremity (1), trunk (1), and head and neck (1). Clinical follow-up (3 patients; 60%) showed no evidence of disease at the last follow-up (median: 5 mo; range: 1 to 16 mo). Histologically, all tumors showed highly similar morphologic features, including an epidermal collarette, well-formed vascular channels composed of epithelioid endothelial cells with intracytoplasmic vacuoles, and admixed inflammatory cells. Immunohistochemically, all tumors were positive for vascular markers such as ERG and CD31, along with strong and diffuse cytoplasmic expression of ALK. RNA sequencing revealed recurrent TPM3 exon 8 :: ALK exon 20 (4) and TPM4 exon 7 :: ALK exon 20 fusions (1). We conclude that cutaneous hemangiomas with epithelioid features harboring TPM3/4::ALK fusions show consistent morphologic, immunophenotypic, and molecular genetic features. It remains to be determined whether this neoplasm represents a distinct entity or a molecular variant of epithelioid hemangioma.
Biopticka Laboratory Pilsen Czech Republic
Department of Dermatopathology St John's Institute of Dermatology St Thomas' Hospital London UK
Department of Pathology and Laboratory Medicine Memorial Sloan Kettering Cancer Center New York NY
Department of Pathology Brigham and Women's Hospital Harvard Medical School MA
Department of Pathology Institut Jules Bordet Brussels Belgium
Department of Pathology New York University
Department of Pathology University of Michigan Ann Arbor MI
Zobrazit více v PubMed
WCoTE Board. Soft Tissue and Bone Tumours 5th ed. IARC Press; 2020.
Tsuda Y, Suurmeijer AJH, Sung YS, et al. Epithelioid hemangioma of bone harboring FOS and FOSB gene rearrangements: a clinicopathologic and molecular study. Genes Chromosomes Cancer. 2021;60:17–25.
Huang SC, Zhang L, Sung YS, et al. Frequent FOS gene rearrangements in epithelioid hemangioma: a molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol. 2015;39:1313–1321.
Dermawan JK, Westra WH, Antonescu CR. Recurrent PTBP1::MAML2 fusions in composite hemangioendothelioma with neuroendocrine differentiation: a report of two cases involving neck lymph nodes. Genes Chromosomes Cancer. 2022;61:187–193.
Linos K, Dermawan JK, Pulitzer M, et al. Untying the Gordian knot of composite hemangioendothelioma: discovery of novel fusions. Genes Chromosomes Cancer. 2024;63:e23198.
Nayler SJ, Rubin BP, Calonje E, et al. Composite hemangioendothelioma: a complex, low-grade vascular lesion mimicking angiosarcoma. Am J Surg Pathol. 2000;24:352–361.
Walther C, Tayebwa J, Lilljebjorn H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol. 2014;232:534–540.
Bridge JA, Sumegi J, Royce T, et al. A novel CLTC-FOSB gene fusion in pseudomyogenic hemangioendothelioma of bone. Genes Chromosomes Cancer. 2021;60:38–42.
Agaram NP, Zhang L, Cotzia P, et al. Expanding the spectrum of genetic alterations in pseudomyogenic hemangioendothelioma with recurrent novel ACTB-FOSB gene fusions. Am J Surg Pathol. 2018;42:1653–1661.
Errani C, Zhang L, Sung YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50:644–653.
Mendlick MR, Nelson M, Pickering D, et al. Translocation t(1;3)(p36.3;q25) is a nonrandom aberration in epithelioid hemangioendothelioma. Am J Surg Pathol. 2001;25:684–687.
Antonescu CR, Le Loarer F, Mosquera JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer. 2013;52:775–784.
Dermawan JK, Azzato EM, Billings SD, et al. YAP1-TFE3-fused hemangioendothelioma: a multi-institutional clinicopathologic study of 24 genetically-confirmed cases. Mod Pathol. 2021;34:2211–2221.
Linos K, Chang JC, Busam KJ. A cutaneous epithelioid vascular tumor harboring a TPM3::ALK fusion. Genes Chromosomes Cancer. 2024;63:e23207.
Dehner CA, Warmke LM, Umphress B, et al. Superficial Neurocristic FET::ETS Fusion Tumor: Expanding the Clinicopathological and Molecular Genetic Spectrum of a Recently Described Entity. Mod Pathol. 2025;38:100656. doi:10.1016/j.modpat.2024.100656. Epub 2024 Nov 8. PMID: 39522640. DOI
Zhu G, Benayed R, Ho C, et al. Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Mod Pathol. 2019;32:609–620.
Torrence D, Dermawan JK, Zhang Y, et al. Detection of GRM1 gene rearrangements in chondromyxoid fibroma: a comparison of fluorescence in-situ hybridisation, RNA sequencing and immunohistochemical analysis. Histopathology. 2024;85:889–898.
Meng Y, Huang K, Shi M, et al. Research advances in the role of the tropomyosin family in cancer. Int J Mol Sci. 2023;24:13295.
Holla VR, Elamin YY, Bailey AM, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 2017;3:a001115.
Shreenivas A, Janku F, Gouda MA, et al. ALK fusions in the pan-cancer setting: another tumor-agnostic target? NPJ Precis Oncol. 2023;7:101.
Drieux F, Ruminy P, Sater V, et al. Detection of gene fusion transcripts in peripheral T-cell lymphoma using a multiplexed targeted sequencing assay. J Mol Diagn. 2021;23:929–940.
Siebert R, Gesk S, Harder L, et al. Complex variant translocation t(1;2) with TPM3-ALK fusion due to cryptic ALK gene rearrangement in anaplastic large-cell lymphoma. Blood. 1999;94:3614–3617.
Lamant L, Dastugue N, Pulford K, et al. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93:3088–3095.
Reading NS, Jenson SD, Smith JK, et al. 5’-(RACE) identification of rare ALK fusion partner in anaplastic large cell lymphoma. J Mol Diagn. 2003;5:136–140.
Cajaiba MM, Jennings LJ, Rohan SM, et al. ALK-rearranged renal cell carcinomas in children. Genes Chromosomes Cancer. 2016;55:442–451.
Cajaiba MM, Jennings LJ, George D, et al. Expanding the spectrum of ALK-rearranged renal cell carcinomas in children: identification of a novel HOOK1-ALK fusion transcript. Genes Chromosomes Cancer. 2016;55:814–817.
Sukov WR, Hodge JC, Lohse CM, et al. ALK alterations in adult renal cell carcinoma: frequency, clinicopathologic features and outcome in a large series of consecutively treated patients. Mod Pathol. 2012;25:1516–1525.
Wiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 2014;5:3116.
Wu G, Barnhill RL, Lee S, et al. The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing. Mod Pathol. 2016;29:359–369.
Lawrence B, Perez-Atayde A, Hibbard MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000;157:377–384.
Lovly CM, Gupta A, Lipson D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4:889–895.
Kerr DA, Thompson LDR, Tafe LJ, et al. Clinicopathologic and genomic characterization of inflammatory myofibroblastic tumors of the head and neck: highlighting a novel fusion and potential diagnostic pitfall. Am J Surg Pathol. 2021;45:1707–1719.
Yamamoto H, Yoshida A, Taguchi K, et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology. 2016;69:72–83.
Kazakov DV, Kyrpychova L, Martinek P, et al. ALK gene fusions in epithelioid fibrous histiocytoma: a study of 14 cases, with new histopathological findings. Am J Dermatopathol. 2018;40:805–814.
Luedersen J, Stadt UZ, Richter J, et al. Variant ALK-fusion positive anaplastic large cell lymphoma (ALCL): a population-based paediatric study of the NHL-BFM study group. Br J Haematol. 2024;204:1894–1898.
Meech SJ, McGavran L, Odom LF, et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4–anaplastic lymphoma kinase gene fusion. Blood. 2001;98:1209–1216.
Lee JC, Li CF, Huang HY, et al. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma. J Pathol. 2017;241:316–323.
Goerdt LV, Schneider SW, Booken N. Cutaneous angiosarcomas: molecular pathogenesis guides novel therapeutic approaches. J Dtsch Dermatol Ges. 2022;20:429–443.
Espejo-Freire AP, Elliott A, Rosenberg A, et al. Genomic landscape of angiosarcoma: a targeted and immunotherapy biomarker analysis. Cancers (Basel). 2021;13:4816.
Doyle LA, Fletcher CD, Hornick JL. Nuclear expression of CAMTA1 distinguishes epithelioid hemangioendothelioma from histologic mimics. Am J Surg Pathol. 2016;40:94–102.
Li S, Dermawan JK, Seavey CN, et al. Epithelioid hemangioendothelioma (EHE) with WWTR1::TFE3 gene fusion, a novel fusion variant. Genes Chromosomes Cancer. 2024;63:e23226.
Brenn T, Fletcher CD. Cutaneous epithelioid angiomatous nodule: a distinct lesion in the morphologic spectrum of epithelioid vascular tumors. Am J Dermatopathol. 2004;26:14–21.
Goto K, Ogawa K, Fukai T, et al. Categorization of cutaneous epithelioid angiomatous nodule as epithelioid hemangioma or angiolymphoid hyperplasia with eosinophilia: clinicopathologic, immunohistochemical, and molecular analyses of seven lesions. J Cutan Pathol. 2022;49:765–771.
Hung YP, Fletcher CD, Hornick JL. FOSB is a useful diagnostic marker for pseudomyogenic hemangioendothelioma. Am J Surg Pathol. 2017;41:596–606.
Papke DJ Jr., Hornick JL. What is new in endothelial neoplasia? Virchows Arch. 2020;476:17–28.
Luzar B, Ieremia E, Antonescu CR, et al. Cutaneous intravascular epithelioid hemangioma. A clinicopathological and molecular study of 21 cases. Mod Pathol. 2020;33:1527–1536.
Tepp JA, Agaram NP, Chang JC, et al. Cellular cutaneous epithelioid hemangioma harboring the rare GATA6::FOXO1 gene fusion. Am J Dermatopathol. 2024;46:223–227.
Antonescu CR, Huang SC, Sung YS, et al. Novel GATA6-FOXO1 fusions in a subset of epithelioid hemangioma. Mod Pathol. 2021;34:934–941.
Antonescu CR, Chen HW, Zhang L, et al. ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosomes Cancer. 2014;53:951–959.
Doyle LA, Marino-Enriquez A, Fletcher CD, et al. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol. 2015;28:904–912.