Low genetic diversity of Treponema pallidum ssp. pertenue (TPE) isolated from patients' ulcers in Namatanai District of Papua New Guinea: Local human population is infected by three TPE genotypes
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38166151
PubMed Central
PMC10786373
DOI
10.1371/journal.pntd.0011831
PII: PNTD-D-23-00693
Knihovny.cz E-resources
- MeSH
- Child MeSH
- Yaws * epidemiology MeSH
- Genotype MeSH
- Humans MeSH
- Multilocus Sequence Typing MeSH
- Mutation MeSH
- Treponema pallidum * genetics MeSH
- Treponema genetics MeSH
- Ulcer MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Papua New Guinea epidemiology MeSH
Yaws is an endemic disease caused by Treponema pallidum subsp. pertenue (TPE) that primarily affects children in rural regions of the tropics. The endemic character of yaws infections and the expected exclusive reservoir of TPE in humans opened a new opportunity to start a yaws eradication campaign. We have developed a multi-locus sequence typing (MLST) scheme for TPE isolates combining the previously published (TP0548, TP0488) and new (TP0858) chromosomal loci, and we compared this typing scheme to the two previously published MLST schemes. We applied this scheme to TPE-containing clinical isolates obtained during a mass drug administration study performed in the Namatanai District of Papua New Guinea between June 2018 and December 2019. Of 1081 samples collected, 302 (28.5%) tested positive for TPE DNA, from which 255 (84.4%) were fully typed. The TPE PCR-positivity in swab samples was higher in younger patients, patients with single ulcers, first ulcer episodes, and with ulcer duration less than six months. Non-treponemal serological test positivity correlated better with PCR positivity compared to treponema-specific serological tests. The MLST revealed a low level of genetic diversity among infecting TPE isolates, represented by just three distinct genotypes (JE11, SE22, and TE13). Two previously used typing schemes revealed similar typing resolutions. Two new alleles (one in TP0858 and one in TP0136) were shown to arise by intragenomic recombination/deletion events. Compared to samples genotyped as JE11, the minor genotypes (TE13 and SE22) were more frequently detected in samples from patients with two or more ulcers and patients with higher values of specific TP serological tests. Moreover, the A2058G mutation in the 23S rRNA genes of three JE11 isolates was found, resulting in azithromycin resistance.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Mathematics and Statistics Indian Institute of Technology Kanpur Uttar Pradesh India
Faculty of Medicine University of Barcelona Barcelona Spain
Lihir Medical Centre Lihir Island Papua New Guinea
National Department of Health Aopi Centre Port Moresby Papua New Guinea
School of Medicine and Health Sciences University of Papua New Guinea Port Moresby Papua New Guinea
See more in PubMed
Mitjà O, Šmajs D, Bassat Q. Advances in the Diagnosis of Endemic Treponematoses: Yaws, Bejel, and Pinta. PLOS Neglected Tropical Diseases. 2013;7: e2283. doi: 10.1371/journal.pntd.0002283 PubMed DOI PMC
Giacani L, Lukehart SA. The endemic treponematoses. Clin Microbiol Rev. 2014;27: 89–115. doi: 10.1128/CMR.00070-13 PubMed DOI PMC
Asiedu K, Fitzpatrick C, Jannin J. Eradication of yaws: historical efforts and achieving WHO’s 2020 target. PLoS Negl Trop Dis. 2014;8: e3016. doi: 10.1371/journal.pntd.0003016 PubMed DOI PMC
The World Health Organisation. Eradication of yaws—the Morges Strategy. Wkly Epidemiol Rec 2012;87: 189–94. PubMed
Capuano C, Ozaki M. Yaws in the Western Pacific Region: A Review of Literature. J Trop Med. 2011;2011: 642832. doi: 10.1155/2011/642832 PubMed DOI PMC
Mitjà O, Houinei W, Moses P, Kapa A, Paru R, Hays R, et al.. Mass Treatment with Single-Dose Azithromycin for Yaws. New England Journal of Medicine. 2015;372: 703–710. doi: 10.1056/NEJMoa1408586 PubMed DOI
Mitjà O, González-Beiras C, Godornes C, Kolmau R, Houinei W, Abel H, et al.. Effectiveness of single-dose azithromycin to treat latent yaws: a longitudinal comparative cohort study. Lancet Glob Health. 2017;5: e1268–e1274. doi: 10.1016/S2214-109X(17)30388-1 PubMed DOI
John LN, Beiras CG, Houinei W, Medappa M, Sabok M, Kolmau R, et al.. Trial of Three Rounds of Mass Azithromycin Administration for Yaws Eradication. New England Journal of Medicine. 2022;386: 47–56. doi: 10.1056/NEJMoa2109449 PubMed DOI PMC
Grange PA, Mikalová L, Gaudin C, Strouhal M, Janier M, Benhaddou N, et al.. Treponema pallidum 11qj Subtype May Correspond to a Treponema pallidum Subsp. Endemicum Strain. Sexually Transmitted Diseases. 2016;43: 517. doi: 10.1097/OLQ.0000000000000474 PubMed DOI
Noda AA, Grillová L, Lienhard R, Blanco O, Rodríguez I, Šmajs D. Bejel in Cuba: molecular identification of Treponema pallidum subsp. endemicum in patients diagnosed with venereal syphilis. Clinical Microbiology and Infection. 2018;24: 1210.e1–1210.e5. doi: 10.1016/j.cmi.2018.02.006 PubMed DOI
Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA. Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua New Guinea. PLOS Neglected Tropical Diseases. 2017;11: e0006113. doi: 10.1371/journal.pntd.0006113 PubMed DOI PMC
Chuma IS, Roos C, Atickem A, Bohm T, Anthony Collins D, Grillová L, et al.. Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates. Sci Rep. 2019;9: 14243. doi: 10.1038/s41598-019-50779-9 PubMed DOI PMC
Katz SS, Chi K-H, Nachamkin E, Danavall D, Taleo F, Kool JL, et al.. Molecular strain typing of the yaws pathogen, Treponema pallidum subspecies pertenue. PLOS ONE. 2018;13: e0203632. doi: 10.1371/journal.pone.0203632 PubMed DOI PMC
Liu H, Rodes B, Chen CY, Steiner B. New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39: 1941–1946. doi: 10.1128/JCM.39.5.1941-1946.2001 PubMed DOI PMC
Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al.. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence. PLOS Neglected Tropical Diseases. 2012;6: e1471. doi: 10.1371/journal.pntd.0001471 PubMed DOI PMC
Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K, Strouhal M, et al.. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLOS ONE. 2018;13: e0200773. doi: 10.1371/journal.pone.0200773 PubMed DOI PMC
Turner TB, Hollander DH. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957; 3–266 PubMed
Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes. PLOS Neglected Tropical Diseases. 2018;12: e0006867. doi: 10.1371/journal.pntd.0006867 PubMed DOI PMC
Marks M, Fookes M, Wagner J, Butcher R, Ghinai R, Sokana O, et al.. Diagnostics for Yaws Eradication: Insights from Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum. Clin Infect Dis. 2018;66: 818–824. doi: 10.1093/cid/cix892 PubMed DOI PMC
Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother. 2000;44: 806–807. doi: 10.1128/AAC.44.3.806-807.2000 PubMed DOI PMC
Matějková P, Flasarová M, Zákoucká H, Bořek M, Křemenová S, Arenberger P, et al.. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol. 2009;58: 832–836. doi: 10.1099/jmm.0.007542-0 PubMed DOI
Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, et al.. Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum. Mol Biol Evol. 2021;39: msab318. doi: 10.1093/molbev/msab318 PubMed DOI PMC
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, et al.. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53: 322–332. doi: 10.1111/j.1574-695X.2008.00427.x PubMed DOI
Vrbová E, Grillová L, Mikalová L, Pospíšilová P, Strnadel R, Dastychová E, et al.. MLST typing of Treponema pallidum subsp. pallidum in the Czech Republic during 2004–2017: Clinical isolates belonged to 25 allelic profiles and harbored 8 novel allelic variants. PLOS ONE. 2019;14: e0217611. doi: 10.1371/journal.pone.0217611 PubMed DOI PMC
Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, et al.. Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLoS Negl Trop Dis. 2019;13: e0007463. doi: 10.1371/journal.pntd.0007463 PubMed DOI PMC
Beale MA, Noguera-Julian M, Godornes C, Casadellà M, González-Beiras C, Parera M, et al.. Yaws re-emergence and bacterial drug resistance selection after mass administration of azithromycin: a genomic epidemiology investigation. The Lancet Microbe. 2020;1: e263–e271. doi: 10.1016/S2666-5247(20)30113-0 PubMed DOI
Grillová L, Pĕtrošová H, Mikalová L, Strnadel R, Dastychová E, Kuklová I, et al.. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J Clin Microbiol. 2014;52: 3693–3700. doi: 10.1128/JCM.01292-14 PubMed DOI PMC
Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, Strnadel R, et al.. Sequencing-based Molecular Typing of Treponema pallidum Strains in the Czech Republic: All Identified Genotypes are Related to the Sequence of the SS14 Strain. Acta Derm Venerol. 2012;92: 669–674. doi: 10.2340/00015555-1335 PubMed DOI
Pospíšilová P, Grange PA, Grillová L, Mikalová L, Martinet P, Janier M, et al.. Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: Infecting treponemes are genetically diverse and belong to 18 allelic profiles. PLoS One. 2018;13: e0201068. doi: 10.1371/journal.pone.0201068 PubMed DOI PMC
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, et al.. Enhanced Molecular Typing of Treponema pallidum: Geographical Distribution of Strain Types and Association with Neurosyphilis. J Infect Dis. 2010;202: 1380–1388. doi: 10.1086/656533 PubMed DOI PMC
Peng R-R, Wang AL, Li J, Tucker JD, Yin Y-P, Chen X-S. Molecular Typing of Treponema pallidum: A Systematic Review and Meta-Analysis. PLOS Neglected Tropical Diseases. 2011;5: e1273. doi: 10.1371/journal.pntd.0001273 PubMed DOI PMC
Mikalová L, Pospíšilová P, Woznicová V, Kuklová I, Zákoucká H, Smajs D. Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient. BMC Microbiol. 2013;13: 178. doi: 10.1186/1471-2180-13-178 PubMed DOI PMC
Zondag HCA, Cornelissen AR, van Dam AP, Bruisten SM. Molecular diversity of Treponema pallidum subspecies pallidum isolates in Amsterdam, the Netherlands. Sex Transm Infect. 2020;96: 223–226. doi: 10.1136/sextrans-2019-054044 PubMed DOI PMC
Fernández-Naval C, Arando M, Espasa M, Antón A, Fernández-Huerta M, Silgado A, et al.. Enhanced molecular typing and macrolide and tetracycline-resistance mutations of Treponema pallidum in Barcelona. Future Microbiology. 2019;14: 1099–1108. doi: 10.2217/fmb-2019-0123 PubMed DOI
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infection, Genetics and Evolution. 2018;61: 92–107. doi: 10.1016/j.meegid.2018.03.015 PubMed DOI
Šmajs D, McKevitt M, Howell JK, Norris SJ, Cai W-W, Palzkill T, et al.. Transcriptome of Treponema pallidum: Gene Expression Profile during Experimental Rabbit Infection. J Bacteriol. 2005;187: 1866–1874. doi: 10.1128/JB.187.5.1866-1874.2005 PubMed DOI PMC
Lay BDD, Cameron TA, Lay NRD, Norris SJ, Edmondson DG. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: Highly similar, yet different. PLOS Pathogens. 2021;17: e1009949. doi: 10.1371/journal.ppat.1009949 PubMed DOI PMC
Hawley KL, Montezuma-Rusca JM, Delgado KN, Singh N, Uversky VN, Caimano MJ, et al.. Structural Modeling of the Treponema pallidum Outer Membrane Protein Repertoire: a Road Map for Deconvolution of Syphilis Pathogenesis and Development of a Syphilis Vaccine. J Bacteriol. 203: e00082–21. doi: 10.1128/JB.00082-21 PubMed DOI PMC
Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al.. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains. J Med Microbiol. 2013;62: 196–207. doi: 10.1099/jmm.0.050658-0 PubMed DOI PMC
Mitjà O, Godornes C, Houinei W, Kapa A, Paru R, Abel H, et al.. Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet. 2018;391: 1599–1607. doi: 10.1016/S0140-6736(18)30204-6 PubMed DOI PMC
Šmajs D, Paštěková L, Grillová L. Macrolide Resistance in the Syphilis Spirochete, Treponema pallidum ssp. pallidum: Can We Also Expect Macrolide-Resistant Yaws Strains? Am J Trop Med Hyg. 2015;93: 678–683. doi: 10.4269/ajtmh.15-0316 PubMed DOI PMC
Šmajs D, Pospíšilová P. Macrolide resistance in yaws. Lancet. 2018;391: 1555–1556. doi: 10.1016/S0140-6736(18)30205-8 PubMed DOI