• This record comes from PubMed

Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion

. 2024 Feb 01 ; 41 (2) : .

Language English Country United States Media print

Document type Journal Article

Grant support
18KK0203 Japan Society for Promotion of Sciences projects
21-19664S Czech Science Foundation
National Institute for Environmental Studies
Ministry of Education, Culture, Sports, Science and Technology
National Institute of Genetics
University of Tsukuba

DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.

See more in PubMed

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. . Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019:66(1):4–119. 10.1111/jeu.12691. PubMed DOI PMC

Al Jewari C, Baldauf SL. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst Biol. 2023a:72(1):1–16. 10.1093/sysbio/syac029. PubMed DOI

Al Jewari C, Baldauf SL. An excavate root for the eukaryote tree of life. Sci Adv. 2023b:9(17):eade4973. 10.1126/sciadv.ade4973. PubMed DOI PMC

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019:2(5):e201900429. 10.26508/lsa.201900429. PubMed DOI PMC

Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017:33(21):3387–3395. 10.1093/bioinformatics/btx431. PubMed DOI

Brachmann BC, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998:14(2):115–132. 10.1002/(SICI)1097-0061(19980130)14:2. PubMed DOI

Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida K-I, Hashimoto T, Simpson AGB, et al. . Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018:10(2):427–433. 10.1093/gbe/evy014. PubMed DOI PMC

Burger G, Saint-Louis D, Gray MW, Lang BF. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea: cyanobacterial introns and shared ancestry of red and green algae. Plant Cell. 1999:11(9):1675–1694. 10.1105/tpc.11.9.1675. PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009:10(1):421. 10.1186/1471-2105-10-421. PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009:25(15):1972–1973. 10.1093/bioinformatics/btp348. PubMed DOI PMC

Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between opisthokonts and all other lineages. Genome Biol Evol. 2022:14(8):evac119. 10.1093/gbe/evac119. PubMed DOI PMC

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018:34(17):i884–i890. 10.1093/bioinformatics/bty560. PubMed DOI PMC

Christensen AC, Lyznik A, Mohammed S, Elowsky CG, Elo A, Yule R, Mackenzie SA. Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell. 2005:17(10):2805–2816. 10.1105/tpc.105.035287. PubMed DOI PMC

Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012:29(4):1277–1289. 10.1093/molbev/msr295. PubMed DOI

Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci USA. 2015:112(7):E693–E699. 10.1073/pnas.1420657112. PubMed DOI PMC

Eddy SR. Accelerated profile HMM searches. PLOS Comput Biol. 2011:7(10):e1002195. 10.1371/journal.pcbi.1002195. PubMed DOI PMC

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000:300(4):1005–1016. 10.1006/jmbi.2000.3903. PubMed DOI

Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol. 2011:3:140–150. 10.1093/gbe/evq074. PubMed DOI PMC

Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid genomes from diverse glaucophyte genera reveal a largely conserved gene content and limited architectural diversity. Genome Biol Evol. 2019:11(1):174–188. 10.1093/gbe/evy268. PubMed DOI PMC

Filée J, Forterre P, Sen-Lin T, Laurent J. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol. 2002:54(6):763–773. 10.1007/s00239-001-0078-x. PubMed DOI

Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015:14(4):1113–1126. 10.1074/mcp.M114.043083. PubMed DOI PMC

Fukuda K, Cooney EC, Irwin NAT, Keeling PJ, Hirakawa Y. High-efficiency transformation of the chlorarachniophyte Amorphochlora amoebiformis by electroporation. Algal Res. 2020:48:101903. 10.1016/j.algal.2020.101903. DOI

Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, Eliáš M. The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere. 2020:5(5):e00675-20. 10.1128/msphere.00675-20. PubMed DOI PMC

Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature. 2019:572(7768):240–243. 10.1038/s41586-019-1398-6. PubMed DOI

Gockel G, Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000:151(4):347–351. 10.1078/S1434-4610(04)70033-4. PubMed DOI

Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier U-G. Protein targeting into the complex plastid of cryptophytes. J Mol Evol. 2006:62(6):674–681. 10.1007/s00239-005-0099-y. PubMed DOI

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. . Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011:29(7):644–652. 10.1038/nbt.1883. PubMed DOI PMC

Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020:18(1):22. 10.1186/s12915-020-0741-6. PubMed DOI PMC

Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase γ in mitochondrial DNA replication and repair. Chem Rev. 2006:106(2):383–405. 10.1021/cr040463d. PubMed DOI

Guilliam TA, Yeeles JTP. An updated perspective on the polymerase division of labor during eukaryotic DNA replication. Crit Rev Biochem Mol Biol. 2020:55(5):469–481. 10.1080/10409238.2020.1811630. PubMed DOI

Harada R, Hirakawa Y, Yabuki A, Kashiyama Y, Maruyama M, Onuma R, Soukal P, Miyagishima S, Hampl V, Tanifuji G, et al. . Inventory and evolution of mitochondrion-localized family A DNA polymerases in Euglenozoa. Pathogens. 2020:9(4):257. 10.3390/pathogens9040257. PubMed DOI PMC

Harada R, Inagaki Y. Phage origin of mitochondrion-localized family A DNA polymerases in kinetoplastids and diplonemids. Genome Biol Evol. 2021:13(2):evab003. 10.1093/gbe/evab003. PubMed DOI PMC

He D, Fiz-Palacios O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL. An alternative root for the eukaryote tree of life. Curr Biol. 2014:24(4):465–470. 10.1016/j.cub.2014.01.036. PubMed DOI

Hirakawa Y, Nagamune K, Ishida K. Protein targeting into secondary plastids of chlorarachniophytes. Proc Natl Acad Sci USA. 2009:106(31):12820–12825. 10.1073/pnas.0902578106. PubMed DOI PMC

Hirakawa Y, Watanabe A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules. 2019:9(4):140. 10.3390/biom9040140. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018:35(2):518–522. 10.1093/molbev/msx281. PubMed DOI PMC

Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, et al. . Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun. 2021:12(1):2947. 10.1038/s41467-021-23046-7. PubMed DOI PMC

Irisarri I, Strassert JFH, Burki F. Phylogenomic insights into the origin of primary plastids. Syst Biol. 2021:71(1):105–120. 10.1093/sysbio/syab036. PubMed DOI

Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 2018:8(1):1523. 10.1038/s41598-017-18805-w. PubMed DOI PMC

Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019:8:e49662. 10.7554/eLife.49662. PubMed DOI PMC

Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci. USA. 2015:112(33):10200–10207. 10.1073/pnas.1423790112. PubMed DOI PMC

Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. . InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014:30(9):1236–1240. 10.1093/bioinformatics/btu031. PubMed DOI PMC

Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T, Wang MH, Shao NC, El Akkad S-E-D, Suzuki T, Higashiyama T, et al. . Gene regulatory networks for the haploid-to-diploid transition of Chlamydomonas reinhardtii. Plant Physiol. 2017:175(1):314–332. 10.1104/pp.17.00731. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC

Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol Evol. 2015:7(4):1133–1140. 10.1093/gbe/evv060. PubMed DOI PMC

Karnkowska A, Yubuki N, Maruyama M, Yamaguchi A, Kashiyama Y, Suzaki T, Keeling PJ, Hampl V, Leander BS. Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Proc Natl Acad Sci USA. 2023:120(12):e2220100120. 10.1073/pnas.2220100120. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC

Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, et al. . The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014:12(6):e1001889. 10.1371/journal.pbio.1001889. PubMed DOI PMC

Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS One. 2015:10(6):e0129284. 10.1371/journal.pone.0129284. PubMed DOI PMC

Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, et al. . A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucleic Acids Res. 2002:30(7):1585–1592. 10.1093/nar/30.7.1585. PubMed DOI PMC

Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell. 2002:10(1):175–186. 10.1016/S1097-2765(02)00571-3. PubMed DOI

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001:305(3):567–580. 10.1006/jmbi.2000.4315. PubMed DOI

Kume K, Amagasa T, Hashimoto T, Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinformatics. 2018:14:1176934318819835. 10.1177/1176934318819835. PubMed DOI PMC

Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013:62(4):611–615. 10.1093/sysbio/syt022. PubMed DOI

Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature. 2018:564(7736):410–414. 10.1038/s41586-018-0708-8. PubMed DOI

Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, et al. . One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019:574(7780):679–685. 10.1038/s41586-019-1693-2. PubMed DOI PMC

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006:22(13):1658–1659. 10.1093/bioinformatics/btl158. PubMed DOI

Mackiewicz P, Gagat P. Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Soc Bot Pol. 2014:83(4):263–280. 10.5586/asbp.2014.044. DOI

Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat Ecol Evol. 2022:6(12):1829–1831. 10.1038/s41559-022-01871-3. PubMed DOI

Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ. Multiple independent origins of apicomplexan-like parasites. Curr Biol. 2019:29(17):2936–2941.e5. 10.1016/j.cub.2019.07.019. PubMed DOI

Mathur V, Salomaki ED, Wakeman KC, Na I, Kwong WK, Kolisko M, Keeling PJ. Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids. Mol Biol Evol. 2023:40(1):msad002. 10.1093/molbev/msad002. PubMed DOI PMC

Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front Plant Sci. 2022:13:918543. 10.3389/fpls.2022.918543. PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37(5):1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC

Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K. Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem. 2013:77(4):874–876. 10.1271/bbb.120936. PubMed DOI

Moog D, Nozawa A, Tozawa Y, Kamikawa R. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Sci Rep. 2020:10(1):1167. 10.1038/s41598-020-58082-8. PubMed DOI PMC

Mori Y, Kimura S, Saotome A, Kasai N, Sakaguchi N, Uchiyama Y, Ishibashi T, Yamamoto T, Chiku H, Sakaguchi K. Plastid DNA polymerases from higher plants, Arabidopsis thaliana. Biochem Biophys Res Commun. 2005:334(1):43–50. 10.1016/j.bbrc.2005.06.052. PubMed DOI

Moriyama T, Sato N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front Plant Sci. 2014:5:480. 10.3389/fpls.2014.00480. PubMed DOI PMC

Moriyama T, Terasawa K, Fujiwara M, Sato N. Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae. FEBS J. 2008:275(11):2899–2918. 10.1111/j.1742-4658.2008.06426.x. PubMed DOI

Moriyama T, Terasawa K, Sato N. Conservation of POPs, the plant organellar DNA polymerases, in eukaryotes. Protist. 2011:162(1):177–187. 10.1016/j.protis.2010.06.001. PubMed DOI

Mukhopadhyay A, Chen C-Y, Doerig C, Henriquez FL, Roberts CW, Barrett MP. The Toxoplasma gondii plastid replication and repair enzyme complex, PREX. Parasitology. 2009:136(7):747–755. 10.1017/S0031182009006027. PubMed DOI

Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, López-García P, Roger AJ. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol. 2022:6(3):253–262. 10.1038/s41559-021-01638-2. PubMed DOI

Nassoury N, Morse D. Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochim Biophys Acta Mol Cell Res. 2005:1743(1-2):5–19. 10.1016/j.bbamcr.2004.09.017. PubMed DOI

Nishimura Y, Shiratori T, Ishida K, Hashimoto T, Ohkuma M, Inagaki Y. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci Rep. 2019:9(1):4850. 10.1038/s41598-019-41238-6. PubMed DOI PMC

Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, et al. . Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 2020:225(4):1578–1592. 10.1111/nph.16237. PubMed DOI

Nowack ECM, Melkonian M, Glöckner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008:18(6):410–418. 10.1016/j.cub.2008.02.051. PubMed DOI

Okazaki T. Days weaving the lagging strand synthesis of DNA—a personal recollection of the discovery of Okazaki fragments and studies on discontinuous replication mechanism. Proc Jpn Acad Ser B. 2017:93(5):322–338. 10.2183/pjab.93.020. PubMed DOI PMC

Ono Y, Sakai A, Takechi K, Takio S, Takusagawa M, Takano H. NtPolI-like1 and NtPolI-like2, bacterial DNA polymerase I homologs isolated from BY-2 cultured tobacco cells, encode DNA polymerases engaged in DNA replication in both plastids and mitochondria. Plant Cell Physiol. 2007:48(12):1679–1692. 10.1093/pcp/pcm140. PubMed DOI

Parent J-S, Lepage E, Brisson N. Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol. 2011:156(1):254–262. 10.1104/pp.111.173849. PubMed DOI PMC

Patron NJ, Waller RF. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays. 2007:29(10):1048–1058. 10.1002/bies.20638. PubMed DOI

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, et al. . InterPro in 2022. Nucleic Acids Res. 2023:51(D1):D418–D427. 10.1093/nar/gkac993. PubMed DOI PMC

Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom Proteom Bioinf. 2006:4(1):48–55. 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC

Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol. 2017:27(3):386–391. 10.1016/j.cub.2016.11.056. PubMed DOI PMC

Provasoli L, Mclaughlin JJ, Droop MR. The development of artificial media for marine algae. Arch Mikrobiol. 1957:25(4):392–428. 10.1007/BF00446694. PubMed DOI

Reesey E. Characterization of the mitochondrial DNA polymerase in Plasmodium falciparum; 2017. Available from: https://www.proquest.com/docview/1984381231/abstract/2682E909B503458DPQ/1

Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022:2:e56. 10.24072/pcjournal.173. DOI

Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005:15(14):1325–1330. 10.1016/j.cub.2005.06.040. PubMed DOI

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017:27(21):R1177–R1192. 10.1016/j.cub.2017.09.015. PubMed DOI

Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, Lane CE, Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol. 2021:19(1):77. 10.1186/s12915-021-01007-2. PubMed DOI PMC

Sarai C, Tanifuji G, Nakayama T, Kamikawa R, Takahashi K, Yazaki E, Matsuo E, Miyashita H, Ishida K, Iwataki M, et al. . Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A. 2020:117(10):5364–5375. 10.1073/pnas.1911884117. PubMed DOI PMC

Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, et al. . Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021:49(D1):D10–D17. 10.1093/nar/gkaa892. PubMed DOI PMC

Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989:16(5-6):339–346. 10.1007/BF00340712. PubMed DOI

Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, Strassert JFH, Pinhassi J, Worden AZ, Keeling PJ, et al. . Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun. 2021:12(1):6651. 10.1038/s41467-021-26918-0. PubMed DOI PMC

Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002:51(3):492–508. 10.1080/10635150290069913. PubMed DOI

Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol. 2020:12(7):978–990. 10.1093/gbe/evaa096. PubMed DOI PMC

Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014:24(11):1176–1186. 10.1016/j.cub.2014.04.033. PubMed DOI

Suzuki S, Ishida K-I, Hirakawa Y. Diurnal transcriptional regulation of endosymbiotically derived genes in the chlorarachniophyte Bigelowiella natans. Genome Biol Evol. 2016:8(9):2672–2682. 10.1093/gbe/evw188. PubMed DOI PMC

Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, et al. . PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol. 2012:29(12):3625–3639. 10.1093/molbev/mss178. PubMed DOI

Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022:50(W1):W228–W234. 10.1093/nar/gkac278. PubMed DOI PMC

Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. . PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021:19(8):e3001365. 10.1371/journal.pbio.3001365. PubMed DOI PMC

Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, Zagumyonnyi DG, Borodina AS, Prokina KI, Mylnikov AP, et al. . Microbial predators form a new supergroup of eukaryotes. Nature. 2022:612(7941):714–719. 10.1038/s41586-022-05511-5. PubMed DOI

Tikhonenkov DV, Strassert JFH, Janouškovec J, Mylnikov AP, Aleoshin VV, Burki F, Keeling PJ. Predatory colponemids are the sister group to all other alveolates. Mol Phylogenet Evol. 2020:149:106839. 10.1016/j.ympev.2020.106839. PubMed DOI

Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol. 2009:26(3):631–648. 10.1093/molbev/msn285. PubMed DOI

Wang H-C, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018:67(2):216–235. 10.1093/sysbio/syx068. PubMed DOI

Westermann B, Neupert W. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000:16(15):1421–1427. 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U. PubMed DOI

Yabuki A, Gyaltshen Y, Heiss AA, Fujikura K, Kim E. Ophirina amphinema n. gen., n. sp., a new deeply branching discobid with phylogenetic affinity to jakobids. Sci Rep. 2018:8(1):16219. 10.1038/s41598-018-34504-6. PubMed DOI PMC

Yamaguchi A, Yubuki N, Leander BS. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol. 2012:12(1):29. 10.1186/1471-2148-12-29. PubMed DOI PMC

Yazaki E, Miyata R, Chikami Y, Harada R, Kawakubo T, Tanifuji G, Nakayama T, Yahata K, Hashimoto T, Inagaki Y. Signs of the plastid: enzymes involved in plastid-localized metabolic pathways in a eugregarine species. Parasitol Int. 2021:83:102364. 10.1016/j.parint.2021.102364. PubMed DOI

Yazaki E, Yabuki A, Imaizumi A, Kume K, Hashimoto T, Inagaki Y. The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris. Open Biol. 2022:12(4):210376. 10.1098/rsob.210376. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...