Cellular mechanisms of cooperative context-sensitive predictive inference
Status PubMed-not-MEDLINE Language English Country Netherlands Media electronic-ecollection
Document type Journal Article, Review
PubMed
38665363
PubMed Central
PMC11043869
DOI
10.1016/j.crneur.2024.100129
PII: S2665-945X(24)00006-8
Knihovny.cz E-resources
- Keywords
- Apical amplification, Coherent Infomax, perceptual inference, prediction error minimisation, predictive coding,
- Publication type
- Journal Article MeSH
- Review MeSH
We argue that prediction success maximization is a basic objective of cognition and cortex, that it is compatible with but distinct from prediction error minimization, that neither objective requires subtractive coding, that there is clear neurobiological evidence for the amplification of predicted signals, and that we are unconvinced by evidence proposed in support of subtractive coding. We outline recent discoveries showing that pyramidal cells on which our cognitive capabilities depend usually transmit information about input to their basal dendrites and amplify that transmission when input to their distal apical dendrites provides a context that agrees with the feedforward basal input in that both are depolarizing, i.e., both are excitatory rather than inhibitory. Though these intracellular discoveries require a level of technical expertise that is beyond the current abilities of most neuroscience labs, they are not controversial and acclaimed as groundbreaking. We note that this cellular cooperative context-sensitivity greatly enhances the cognitive capabilities of the mammalian neocortex, and that much remains to be discovered concerning its evolution, development, and pathology.
Faculty of Natural Sciences University of Stirling United Kingdom
Institute of Philosophy Czech Academy of Sciences Czech Republic
See more in PubMed
Adeel A., Adetomi A., Ahmed K., et al. Unlocking the potential of two-point cells for energy-efficient and resilient training of deep nets. IEEE Transac. Emerg. Topics in Comput. Intelli. 2023:1–11.
Adeel A., Franco M., Raza M., et al. 2022. Context-sensitive neocortical neurons transform the effectiveness and efficiency of neural information processing. DOI
Alilović J., Timmermans B., Reteig L.C., et al. No evidence that predictions and attention modulate the first feedforward sweep of cortical information processing. Cerebr. Cortex. 2019;29:2261–2278. PubMed PMC
Almeida V.N. The neural hierarchy of consciousness: a theoretical model and review on neurophysiology and NCCs. Neuropsychologia. 2022;169 PubMed
Anderson K.M., Collins M.A., Chin R., Ge T., Rosenberg M.D., Holmes A.J. Transcriptional and imaging-genetic association of cortical interneurons, brain function, and schizophrenia risk. Nat. Commun. 2020;11(1):1–15. PubMed PMC
Aru J., Suzuki M., Larkum M.E. Cellular mechanisms of conscious processing. Trends Cognit. Sci. 2020;24:814–825. PubMed
Aru J., Siclari F., Phillips W.A., Storm J.F. Apical drive—a cellular mechanism of dreaming? Neurosci. Biobehav. Rev. 2020;119:440–455. PubMed
Aru J., Bachmann T., Suzuki M., et al. Primer on the dendritic integration theory of consciousness. PsyArXic. 2023 doi: 10.31234/osf.io/vkdt2. DOI
Bachmann T., Suzuki M., Aru J. Dendritic integration theory: a thalamo-cortical theory of state and content of consciousness. Philosophy and the Mind Sci. 2020;1 doi: 10.33735/phimisci.2020.II.52. DOI
Barron H.C., Auksztulewicz R., Friston K. Prediction and memory: a predictive coding account. Prog. Neurobiol. 2020;192 PubMed PMC
Bastos A.M., Usrey W.M., Adams R.A., et al. Canonical microcircuits for predictive coding. Neuron. 2012;76:695–711. PubMed PMC
Beaulieu-Laroche L., Toloza E.H.S., van der Goes M.-S., et al. Enhanced dendritic compartmentalization in human cortical neurons. Cell. 2018;175:643–651.e14. PubMed PMC
Boldog E., Bakken T.E., Hodge R.D., et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat. Neurosci. 2018;21:1185–1195. PubMed PMC
Brouillet D., Friston K. Relative fluency (unfelt vs felt) in active inference. Conscious. Cognit. 2023;115 doi: 10.1016/j.concog.2023.103579. PubMed DOI
Capone C., Lupo C., Muratore P., Paolucci P.S. Beyond spiking networks: the computational advantages of dendritic amplification and input segregation. Proc. Natl. Acad. Sci. U.S.A. 2023;120(49) doi: 10.1073/pnas.22207431202023. PubMed DOI PMC
Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013;36:181–204. PubMed
Clark A. The many faces of precision. (Replies to commentaries on “Whatever next? Neural prediction, situated agents, and the future of cognitive science”) Front. Psychol. 2013;4:270. PubMed PMC
Clark A. Consciousness as generative entanglement. J. Philos. 2019;116:645–662.
Dowdle L., Ghose G., Moeller S., et al. Characterizing top-down microcircuitry of complex human behavior across different levels of the visual hierarchy. bioRxiv. 2023 doi: 10.1101/2022.12.03.518973. DOI
Fiorillo C.D. Towards a general theory of neural computation based on prediction by single neurons. PLoS One. 2008;3(10) doi: 10.1371/journal.pone.0003298. PubMed DOI PMC
Fiorillo C.D. A neurocentric approach to Bayesian inference. Nat. Rev. Neurosci. 2010;11(8):605. PubMed
Fiorillo C.D. Beyond Bayes: on the need for a unified and Jaynesian definition of probability and information within neuroscience. Information. 2012;3(2):175–203.
Graham B.P., Kay J.W., Phillips W.A. Transfer functions for burst firing probability in a model neocortical pyramidal cell. bioRxiv. 2024 doi: 10.1101/2024.01.16.575982. 01.16. DOI
Harnett M.T., Magee J.C., Williams S.R. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons. J. Neurosci. 2015;35:1024–1037. PubMed PMC
Harris K.D., Shepherd G.M.G. The neocortical circuit: themes and variations. Nat. Neurosci. 2015;18:170–181. PubMed PMC
Heeger D.J., Mackey W.E. Oscillatory recurrent gated neural integrator circuits (ORGaNICs), a unifying t heoretical framework for neural dynamics. Proc. Natl. Acad. Sci. USA. 2019;116(45):22783–22794. PubMed PMC
Heeger D.J., Zemlianova K.O. A recurrent circuit implements normalization, simulating the dynamics of V1 activity. Proc. Natl. Acad. Sci. USA. 2020;117(36):22494–22505. PubMed PMC
Hertz J., Krogh A., Palmer R.G. Addison-Wesley; Redwood City, CA: 1991. Introduction to the Theory of Neural Computation.
Hobson J.A., Hong C.C.-H., Friston K. Virtual reality and consciousness inference in dreaming. Front. Psychol. 2014;5:1133. PubMed PMC
Hohwy J. Oxford University Press; Oxford, New York: 2013. The Predictive Mind.
Huang Y., Rao R.P.N. Predictive coding. Wiley Interdiscipl. Rev. Cogn. Sci. 2011;2:580–593. PubMed
Jadi J.P., Behabadi B.F., Poleg-Polsky A., Schiller J., Mel B.W. An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites. Proc. IEEE. 2014;102:782–798. PubMed PMC
Johnson R.R., Burkhalter A. A polysynaptic feedback circuit in rat visual cortex. J. Neurosci. 1997;17:7129–7140. PubMed PMC
Kalmbach B.E., Buchin A., Long B., Close J., Nandi A., Miller J.A., Bakken T.E., Hodge R.D., Chong P., de Frates R., Dai K. h-Channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in human versus mouse cerebral cortex. Neuron. 2018;100(5):1194–1208. doi: 10.1016/j.neuron.2018.10.012. PubMed DOI PMC
Kanai R., Komura Y., Shipp S., et al. Cerebral hierarchies: predictive processing, precision and the pulvinar. Phil. Trans. Biol. Sci. 2015;370 PubMed PMC
Karnani M.M., Agetsuma M., Yuste R. A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr. Opin. Neurobiol. 2014;26:96–102. PubMed PMC
Kay J.W., Phillips W.A. Coherent Infomax as a computational goal for neural systems. Bull. Math. Biol. 2011;73:344–372. PubMed
Kay J.W., Phillips W.A. Contextual modulation in mammalian neocortex is asymmetric. Symmetry. 2020;12:815.
Kay J.W., Schulz J.M., Phillips W.A. A comparison of partial information decompositions using data from real and simulated layer 5b pyramidal cells. Entropy. 2022;24:1021. PubMed PMC
Khan A.G., Hofer S.B. Contextual signals in visual cortex. Curr. Opin. Neurobiol. 2018;52:131–138. PubMed
Körding K.P., König P. Learning with two sites of synaptic integration. Netw. Comput. Neural Syst. 2000;11:25–39. PubMed
Kuhn T.S. University of Chicago Press; Chicago: 1962. The Structure of Scientific Revolutions.
Kuhn T.S. In: Criticism and the Growth of Knowledge. Lakatos I., Musgrave A., editors. Cambridge University Press; Cambridge: 1970. Reflections on my critics; pp. 231–278.
Lamme V.A.F. In: The Visual Neurosciences. Werner J.S., Chalupa L.M., editors. MIT Press; Cambridge, MA: 2004. Beyond the classical receptive field: contextual modulation of V1 responses; pp. 720–732.
Lamme V.A.F. Visual functions generating conscious seeing. Front. Psychol. 2020;11:83. PubMed PMC
Larkum M.E. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 2013;36 doi: 10.1016/j.tins.2012.11.006. PubMed DOI
Larkum M.E., Phillips W.A. Does arousal enhance apical amplification and disamplification? Behav. Brain Sci. 2016;39 PubMed
Larkum M.E., Zhu J.J., Sakmann B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 1999;398:338–341. PubMed
Lee T.S., Mumford D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. Opt Image Sci. Vis. 2003;20:1434–1448. PubMed
Linsker R. Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Comput. 1992;4:691–702.
Linson A., Parr T., Friston K.J. Active inference, stressors, and psychological trauma: a neuroethological model of (mal)adaptive explore-exploit dynamics in ecological context. Behav. Brain Res. 2020;380 doi: 10.1016/j.bbr.2019.112421. PubMed DOI PMC
Litwin P., Miłkowski M. Unification by fiat: arrested development of predictive processing. Cognit. Sci. 2020;44 PubMed PMC
Markov N.T., Kennedy H. The importance of being hierarchical. Curr. Opin. Neurobiol. 2013;23:187–194. PubMed
Marvan T., Polák M., Bachmann T., et al. Apical amplification – a cellular mechanism of conscious perception? Neurosci. Consciousness. 2021;2021 PubMed PMC
Mikulasch F., Rudelt L., Wibral M., Priesemann V. Where is the error? Hierarchical predictive coding through dendritic error computation. Trends Neurosci. 2023;46(1):45–59. PubMed
Muckli L., Petro L., Abbatecola C., Adeel A., Bergmann J., Deperrois N., Destexhe A., Kriegeskorte N., Levelt C.N., Maass W., Morgan A.T., Papale P., Pennartz C.M.A., Peters B., Petrovici M., Phillips W.A., Roelfsema P.R., Sachdev R.N.S., Seignette K., Self M.W., Smith F.W., Storm J.F., Svanera M., Vanduffel W., Senn W., Larkum M.E. Vol. 1. 2023. The Cortical Microcircuitry of Predictions and Context – a Multi-Scale Perspective. (Zenodo). DOI
Mumford D. On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 1992;66:241–251. PubMed
Naud R., Friedenberger Z., Toth K. Silences, spikes and bursts: three-part knot of the neural code. bioRxiv. 2023 doi: 10.48550/arXiv.2302.07206. arXiv:2302.07206v1 [q-bio.NC] PubMed DOI
Ouden C den, Zhou A., Mepani V., et al. Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs. bioRxiv. 2023 doi: 10.1101/2023.04.05.535778. PubMed DOI
Pastorelli E., Yegenoglu A., Kolodziej N., Wybo W., Simula F., Diaz S., Storm J.F., Paolucci P.S. Two-compartment neuronal spiking model expressing brain-state specific apical-amplification, -isolation and -drive regimes. bioRxiv. 2023 doi: 10.48550/arXiv.2311.06074. arXiv:2311.06074 [q-bio.NC] DOI
Penny W. Bayesian models of brain and behaviour. Int. Sch. Res. Notices. 2012;2012
Phillips W.A. Cognitive functions of intracellular mechanisms for contextual amplification. Brain Cognit. 2017;112:39–53. PubMed
Phillips W.A., Bachmann T., Storm J.F. Apical function in neocortical pyramidal cells: a common pathway by which general anesthetics can affect mental state. Front. Neural Circ. 2018;12 doi: 10.3389/fncir.2018.00050. PubMed DOI PMC
Phillips W.A., Clark A., Silverstein S.M. On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neurosci. Biobehav. Rev. 2015;52:1–20. PubMed
Phillips W.A. Oxford University Press; Oxford, New York: 2023. The Cooperative Neuron: Cellular Foundations of Mental Life.
Pujol C.F., Blundon E.G., Dykstra A.R. Laminar specificity of the auditory perceptual awareness negativity: a biophysical modeling study. PLoS Comput. Biol. 2023;19 PubMed PMC
Ramaswamy S., Markram H. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Front. Cell. Neurosci. 2015;9 doi: 10.3389/fncel.2015.00233. PubMed DOI PMC
Rao R.P.N., Ballard D.H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999;2:79–87. PubMed
Rigoli F., Michely J., Friston K.J., et al. The role of the hippocampus in weighting expectations during inference under uncertainty. Cortex. 2019;115:1–14. PubMed PMC
Roth M.M., Dahmen J.C., Muir D.R., et al. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 2016;19:299–307. PubMed PMC
Schmid D., Jarvers C., Neumann H. Canonical circuit computations for computer vision. Biol. Cybern. 2023 doi: 10.1007/s00422-023-00966-9. PubMed DOI PMC
Sarwat S.G., Moraitis T., Wright C.D., Bhaskaran H. Chalcogenide optomemristors for multi-factor neuromorphic computation. Nat. Commun. 2022;13:2247. doi: 10.1038/s41467-022-29870-9. PubMed DOI PMC
Schulz J.M., Kay J.W., Bischofberger J., et al. GABAB receptor-mediated regulation of dendro-somatic synergy in layer 5 pyramidal neurons. Front. Cell. Neurosci. 2021;15 PubMed PMC
Schuman B., Dellal S., Prönneke A., et al. Neocortical layer 1: an elegant solution to top-down and bottom-up integration. Annu. Rev. Neurosci. 2021;44:221–252. PubMed PMC
Seth A. Faber; London: 2021. Being You.
Shai A.S., Anastassiou C.A., Larkum M.E., Koch C. Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput. Biol. 2015;11(3) doi: 10.1371/journal.pcbi.1004090. PubMed DOI PMC
Shipp S. Neural elements for predictive coding. Front. Psychol. 2016;7:1792. doi: 10.3389/fpsyg.2016.01792.eCollection2016. PubMed DOI PMC
Shipp S. Computational components of visual predictive coding circuitry. Front. Neural Circ. 2024;17 doi: 10.3389/fncir.2023.1254009.eCollection2023. PubMed DOI PMC
Shipp S., Friston K. In: The Cerebral Cortex and Thalamus. Usrey W.M., Sherman S.M., editors. Oxford University Press; New York: 2023. Predictive coding: forward and backward connectivity; pp. 436–445.
Siegel M., Körding K.P., König P. Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. J. Comput. Neurosci. 2000;8:161–173. PubMed
Solomon S.S., Tang H., Sussman E., et al. Limited evidence for sensory prediction error responses in visual cortex of macaques and humans. Cerebr. Cortex. 2021;31:3136–3152. PubMed PMC
Spratling M.W. Predictive coding as a model of biased competition in visual attention. Vis. Res. 2008;48:1391–1408. PubMed
Spratling M.W. A review of predictive coding algorithms. Brain Cognit. 2017;112:92–97. PubMed
Spratling M.W. Fitting predictive coding to the neurophysiological data. Brain Res. 2019;1720 PubMed
Sprevak M. PhilSci Archive; 2021. Predictive coding I: Introduction.http://philsci-archive.pitt.edu/id/eprint/19365
Sun Z., Firestone C. The dark room problem. Trends Cognit. Sci. 2020;24(5):346–348. PubMed
Takahashi N., Oertner T.G., Hegemann P., et al. Active cortical dendrites modulate perception. Science. 2016;354:1587–1590. PubMed
Tantirigama M.L.S., Zolnik T., Judkewitz B., Larkum M.E., Sachdev R.N.S. Perspective on the multiple pathways to changing brain states. Front. Syst. Neurosci. 2020;14:23. PubMed PMC
van Versendaal D., Levelt C.N. Inhibitory interneurons in visual cortical plasticity. Cell. Mol. Life Sci. 2016;73:3677–3691. PubMed PMC
Walsh K.S., McGovern D.P., Clark A., et al. Evaluating the neurophysiological evidence for predictive processing as a model of perception. Ann. N. Y. Acad. Sci. 2020;1464:242–268. PubMed PMC
Wang X.-J., Yang G.R. A disinhibitory circuit motif and flexible information routing in the brain. Curr. Opin. Neurobiol. 2018;49:75–83. PubMed PMC
Wibral M., Lizier J.T., Priesemann V. Bits from brains for biologically inspired computing. Front. Robot AI. 2015;2 doi: 10.3389/frobt.2015.00005. DOI
Granato A, Phillips WA, Schulz J, Suzuki M, Larkum ME. Sumbitted. Cellular Mechanisms of Neurodevelopmental Learning Disabilities. PubMed
Williams PL, Beer RD. Nonnegative decomposition of multivariate information. arXiv:1004.2515 [cs.IT]..
Williams S.R., Fletcher L.N. A dendritic substrate for the cholinergic control of neocortical output neurons. Neuron. 2019;101:486–499.e4. PubMed
Wittgenstein L. Blackwell; Oxford: 1953. Philosophical Investigations.
Xu N., Harnett M.T., Williams S.R., et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature. 2012;492:247–251. PubMed
Zhang S., Xu M., Kamigaki T., Hoang Do J.P., Chang W.C., Jenvay S., Miyamichi K., Luo L., Dan Y. Long-range and local circuits for top-down modulation of visual cortex processing. Science. 2014;345(6197):660–665. PubMed PMC