Expanding the CarD interaction network: CrsL is a novel transcription regulator in actinobacteria
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
23-05622S J.Hn.
Czech Science Foundation
22-12023S
Czech Science Foundation
275823
Charles University
EXCELES LX22NPO5103
European Union-Next Generation EU, National Institute of Virology and Bacteriology
OPJAK
Ministry of Education
CZ.02.01.01/00/22_008/0004597
Ministry of Education
CZ.02.01.01/00/22_008/0004575
Ministry of Education
LM2023055
ELIXIR CZ
75010330
Ministry of Health
PubMed
41404806
PubMed Central
PMC12709188
DOI
10.1093/nar/gkaf1342
PII: 8382376
Knihovny.cz E-zdroje
- MeSH
- Actinobacteria genetika metabolismus MeSH
- bakteriální proteiny * metabolismus genetika chemie MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- genetická transkripce MeSH
- Mycobacterium smegmatis * genetika metabolismus MeSH
- Mycobacterium tuberculosis genetika MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u bakterií * MeSH
- transkripční faktory * metabolismus genetika chemie MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- DNA řízené RNA-polymerasy MeSH
- transkripční faktory * MeSH
Bacterial transcription regulation is critical for adaptation and survival. CarD is an essential transcription factor in mycobacteria involved in the regulation of gene expression. We searched for CarD interaction partners in Mycobacterium smegmatis and identified a novel uncharacterized protein, named CrsL (MSMEG_5890). CrsL is a 5.7 kDa protein shown by NMR to be intrinsically disordered. CrsL homologs are present in actinobacteria, including pathogenic species such as Mycobacterium tuberculosis. CrsL interacts directly with CarD, adopting an ordered structure in the complex, and also binds RNAP, controlling CarD-RNAP association. ChIP-seq showed that CrsL associates with the promoters of actively transcribed genes and ∼75% of these regions are also associated with CarD. RNA-seq revealed ∼50% and ∼66% overlap in differentially expressed genes between CrsL and CarD knockdowns during the exponential and stationary phases, respectively. Among CrsL-regulated genes are DesA desaturase (MSMEG_5773) and DEAD/DEAH-box RNA helicase MSMEG_1930, which contribute to cold stress adaptation. CrsL supports the growth of M. smegmatis at elevated temperature but limits growth in cold environments. In summary, these findings identify CrsL as a novel, conserved CarD-interacting protein playing a key role in mycobacterial stress responses by modulating CarD function.
Central European Institute of Technology Masaryk University Brno 62500 Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague 12800 Czech Republic
Laboratory of Regulatory RNAs Faculty of Science Charles University Prague 12844 Czech Republic
Military Health Institute Military Medical Agency Prague 16200 Czech Republic
National Institute of Public Health Prague 10000 Czech Republic
Zobrazit více v PubMed
Sax H, Bloemberg G, Hasse B et al. Prolonged outbreak of mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015; 61:67–75. 10.1093/cid/civ198. PubMed DOI
Sommerstein R, Rüegg C, Kohler P et al. Transmission of PubMed DOI PMC
Murakami KS, Darst SA. Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol. 2003;13:31–9. 10.1016/S0959-440X(02)00005-2. PubMed DOI
Murakami KS, Masuda S, Darst SA. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science. 2002;296:1280–4. 10.1126/science.1069594. PubMed DOI
Chen J, Boyaci H, Campbell EA. Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol. 2021;19:95–109. 10.1038/s41579-020-00450-2. PubMed DOI PMC
Browning DF, Busby SJ. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004;2:57–65. 10.1038/nrmicro787. PubMed DOI
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol. 2019;112:335–47. 10.1111/mmi.14309. PubMed DOI PMC
Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–65. 10.3390/biom5031245. PubMed DOI PMC
Gomez M, Doukhan L, Nair G et al. sigA is an essential gene in PubMed DOI
Rodrigue S, Provvedi R, Jacques P-E et al. The σ factors of PubMed DOI
Hu Y, Morichaud Z, Sudalaiyadum Perumal A et al. Mycobacterium RbpA cooperates with the stress-response σB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res. 2014;42:10399–408. 10.1093/nar/gku742. PubMed DOI PMC
Lee J-H, Karakousis PC, Bishai WR. Roles of SigB and SigF in the PubMed DOI PMC
Hurst-Hess K, Biswas R, Yang Y et al. Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. mBio. 2019;10:e00273–19. https://journals.asm.org/doi/10.1128/mbio.00273-19. PubMed DOI PMC
Singha B, Behera D, Khan MZ et al. The unique N-terminal region of PubMed DOI PMC
Sachdeva P, Misra R, Tyagi AK et al. The sigma factors of PubMed DOI
Demaio J, Zhang Y, Ko C et al. A stationary-phase stress-response sigma factor from PubMed DOI PMC
Gomez J, Chen J, Bishai WR. Sigma factors of PubMed DOI
Davis E, Chen J, Leon K et al. Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Nucleic Acids Res. 2015;43:433–45. 10.1093/nar/gku1231. PubMed DOI PMC
Rammohan J, Ruiz Manzano A, Garner AL et al. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Res. 2015;43:3272–85. 10.1093/nar/gkv078. PubMed DOI PMC
Bortoluzzi A, Muskett FW, Waters LC et al. PubMed DOI PMC
Forti F, Mauri V, Dehò G et al. Isolation of conditional expression mutants in PubMed DOI
Dey A, Verma AK, Chatterji D. Role of an RNA polymerase interacting protein, MsRbpA, from PubMed DOI
Hubin EA, Fay A, Xu C et al. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife. 2017;6:e22520. 10.7554/eLife.22520. PubMed DOI PMC
Verma AK, Chatterji D. Dual role of MsRbpA: transcription activation and rescue of transcription from the inhibitory effect of rifampicin. Microbiology. 2014;160:2018–29. 10.1099/mic.0.079186-0. PubMed DOI
Hubin EA, Tabib-Salazar A, Humphrey LJ et al. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc Natl Acad Sci. 2015;112:7171–6. 10.1073/pnas.1504942112. PubMed DOI PMC
Boyaci H, Saecker R, Campbell E. Transcription initiation in mycobacteria: a biophysical perspective. Transcription. 2020;11:53–65. 10.1080/21541264.2019.1707612. PubMed DOI PMC
Hu Y, Morichaud Z, Chen S et al. PubMed DOI PMC
Betts JC, Lukey PT, Robb LC et al. Evaluation of a nutrient starvation model of PubMed DOI
Dey A, Verma AK, Chatterji D. Molecular insights into the mechanism of phenotypic tolerance to rifampicin conferred on mycobacterial RNA polymerase by MsRbpA. Microbiology. 2011;157:2056–71. 10.1099/mic.0.047480-0. PubMed DOI
Newell KV, Thomas DP, Brekasis D et al. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on PubMed DOI
Gulten G, Sacchettini JC. Structure of the Mtb CarD/RNAP β-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD. Structure. 2013;21:1859–69. 10.1016/j.str.2013.08.014. PubMed DOI PMC
Zhu DX, Stallings CL. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J Biol Chem. 2023;299:104724. 10.1016/j.jbc.2023.104724. PubMed DOI PMC
Stallings CL, Stephanou NC, Chu L et al. CarD is an essential regulator of rRNA transcription required for PubMed DOI PMC
Srivastava DB, Leon K, Osmundson J et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci. 2013;110:12619–24. 10.1073/pnas.1308270110. PubMed DOI PMC
Zhu DX, Garner AL, Galburt EA et al. CarD contributes to diverse gene expression outcomes throughout the genome of PubMed DOI PMC
Garner AL, Weiss LA, Manzano AR et al. CarD integrates three functional modules to promote efficient transcription, antibiotic tolerance, and pathogenesis in mycobacteria. Mol Microbiol. 2014;93:682–97. 10.1111/mmi.12681. PubMed DOI PMC
Garner AL, Rammohan J, Huynh JP et al. Effects of increasing the affinity of CarD for RNA polymerase on PubMed DOI PMC
Li X, Chen F, Liu X et al. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife. 2022;11:e73347. 10.7554/eLife.73347. PubMed DOI PMC
Panek J, Krásný L, Bobek J et al. The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 2011;39:3418–26. 10.1093/nar/gkq1186. PubMed DOI PMC
Hnilicová J, Jirát Matějčková J, Šiková M et al. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res. 2014;42:11763–76. 10.1093/nar/gku793. PubMed DOI PMC
Šiková M, Janoušková M, Ramaniuk O et al. Ms1 RNA increases the amount of RNA polymerase in PubMed DOI
Vaňková Hausnerová V, Marvalová O, Šiková M et al. Ms1 RNA interacts with the RNA polymerase core in PubMed DOI PMC
Arnvig KB, Comas I, Thomson NR et al. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of PubMed DOI PMC
Vaňková Hausnerová V, Shoman M, Kumar D et al. RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res. 2024;52:4604–26. 10.1093/nar/gkae081. PubMed DOI PMC
Kouba T, Koval T, Sudzinová P et al. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun. 2020;11:1–13. 10.1038/s41467-020-20158-4. PubMed DOI PMC
Vaňková Hausnerová V, Kumar D, Shoman M et al. HelD is a global transcription factor enhancing gene expression in rapidly growing mycobacteria. bioRxiv, https://www.biorxiv.org/content/10.1101/2024.11.27.625628v1, 28 November 2024, preprint: not peer reviewed. DOI
Brezovská B, Narasimhan S, Šiková M et al. MoaB2, a newly identified transcription factor, binds to σ in PubMed DOI PMC
Wu Y, Li Q, Chen X-Z. Detecting protein–protein interactions by far western blotting. Nat Protoc. 2007;2:3278–84. 10.1038/nprot.2007.459. PubMed DOI
Sambrook J, Fritsch E, Maniatis T. Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbor, 1987, E12.
Sklenar V, Piotto M, Leppik R et al. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Res Ser A. 1993;102:241–5. 10.1006/jmra.1993.1098. DOI
Bodenhausen G, Ruben DJ. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett. 1980;69:185–9. 10.1016/0009-2614(80)80041-8. DOI
Kay LE, Ikura M, Tschudin R et al. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 1969. 1990; 89:496–514. PubMed
Bax A, Ikura M. An efficient 3D NMR technique for correlating the proton and15N backbone amide resonances with the α-carbon of the preceding residue in uniformly15N/13C enriched proteins. J Biomol NMR. 1991;1:99–104. 10.1007/BF01874573. PubMed DOI
Wittekind M, Mueller L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Res Ser B. 1993;101:201–5. 10.1006/jmrb.1993.1033. DOI
Grzesiek S, Bax A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc. 1992;114:6291–3. 10.1021/ja00042a003. DOI
Zuiderweg ERP, Fesik SW. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989;28:2387–91. 10.1021/bi00432a008. PubMed DOI
Pervushin K, Riek R, Wider G et al. Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci. 1997;94:12366–71. 10.1073/pnas.94.23.12366. PubMed DOI PMC
Delaglio F, Grzesiek S, Vuister GW et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93. 10.1007/BF00197809. PubMed DOI
Marsh JA, Singh VK, Jia Z et al. Sensitivity of secondary structure propensities to sequence differences between α-and γ-synuclein: implications for fibrillation. Protein Sci. 2006;15:2795–804. 10.1110/ps.062465306. PubMed DOI PMC
Kjaergaard M, Poulsen FM. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR. 2011;50:157–65. 10.1007/s10858-011-9508-2. PubMed DOI
Kjaergaard M, Brander S, Poulsen FM. Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR. 2011;49:139–49. 10.1007/s10858-011-9472-x. PubMed DOI
Schwarzinger S, Kroon GJ, Foss TR et al. Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc. 2001;123:2970–8. 10.1021/ja003760i. PubMed DOI
Tamiola K, Mulder FA. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans. 2012;40:1014–20. 10.1042/BST20120171. PubMed DOI
Tamiola K, Acar B, Mulder FAA. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc. 2010;132:18000–3. 10.1021/ja105656t. PubMed DOI
Han B, Liu Y, Ginzinger SW et al. SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR. 2011;50:43–57. 10.1007/s10858-011-9478-4. PubMed DOI PMC
Zhang Z, Miller W, Schäffer AA et al. Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 1998;26:3986–90. 10.1093/nar/26.17.3986. PubMed DOI PMC
Zhang C, Zheng W, Mortuza S et al. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics. 2020;36:2105–12. 10.1093/bioinformatics/btz863. PubMed DOI PMC
Kanehisa M, Furumichi M, Sato Y et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–92. 10.1093/nar/gkac963. PubMed DOI PMC
Okonechnikov K, Golosova O, Fursov M et al. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7. 10.1093/bioinformatics/bts091. PubMed DOI
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–4. 10.1093/nar/gku316. PubMed DOI PMC
Crooks GE, Hon G, Chandonia J-M et al. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90. 10.1101/gr.849004. PubMed DOI PMC
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–5. 10.1093/bioinformatics/16.4.404. PubMed DOI
Høie MH, Kiehl EN, Petersen B et al. NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning. Nucleic Acids Res. 2022;50:W510–5. 10.1093/nar/gkac439. PubMed DOI PMC
Erdős G, Dosztányi Z. Analyzing protein disorder with IUPred2A. Curr Protoc Bioinform. 2020;70:e99. 10.1002/cpbi.99. PubMed DOI
Walsh I, Martin AJ, Di Domenico T et al. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics. 2012;28:503–9. 10.1093/bioinformatics/btr682. PubMed DOI
Hu G, Katuwawala A, Wang K et al. flDPnn: accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat Commun. 2021;12:4438. 10.1038/s41467-021-24773-7. PubMed DOI PMC
Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Evans R, O’Neill M, Pritzel A et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 10.1101/2021.10.04.463034, 10 March 2022, preprint: not peer reviewed. DOI
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. 10.1038/nmeth.3317. PubMed DOI PMC
Gaspar JM. Improved peak-calling with MACS2. bioRxiv, 10.1101/496521, 17 December 2018, preprint: not peer reviewed. DOI
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2. 10.1093/bioinformatics/btq033. PubMed DOI PMC
Khan A, Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinf. 2017;18:1–8. 10.1186/s12859-017-1708-7. PubMed DOI PMC
Ramírez F, Ryan DP, Grüning B et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160. 10.1093/nar/gkw257. PubMed DOI PMC
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841. 10.1093/bioinformatics/btp328. PubMed DOI PMC
Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5. 10.1109/MCSE.2007.55. DOI
Waskom ML. Seaborn: statistical data visualization. J Open Source Software. 2021;6:3021. 10.21105/joss.03021. DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. 10.1038/nmeth.3317. PubMed DOI PMC
Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. 10.1093/bioinformatics/btp352. PubMed DOI PMC
Bonfield JK, Marshall J, Danecek P et al. HTSlib: c library for reading/writing high-throughput sequencing data. Gigascience. 2021;10:giab007. 10.1093/gigascience/giab007. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Choudhary E, Thakur P, Pareek M et al. Gene silencing by CRISPR interference in mycobacteria. Nat Commun. 2015;6:6267. 10.1038/ncomms7267. PubMed DOI
Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol. 2003;57:441–66. 10.1146/annurev.micro.57.030502.090913. PubMed DOI
Wang Z, Cumming BM, Mao C et al. RbpA and σB association regulates polyphosphate levels to modulate mycobacterial isoniazid-tolerance. Mol Microbiol. 2018;108:627–40. 10.1111/mmi.13952. PubMed DOI
Singh RK, Jaiswal LK, Nayak T et al. Expression, purification, and PubMed DOI PMC
Lilic M, Holmes NA, Bush MJ et al. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc Natl Acad Sci. 2023;120:e2220785120. 10.1073/pnas.2220785120. PubMed DOI PMC
Cole S, Brosch R, Parkhill J et al. Deciphering the biology of PubMed DOI
Kelkar DS, Kumar D, Kumar P et al. Proteogenomic analysis of PubMed DOI PMC
Kapopoulou A, Lew JM, Cole ST. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis. 2011;91:8–13. 10.1016/j.tube.2010.09.006. PubMed DOI
UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. 10.1093/nar/gkac1052. PubMed DOI PMC
Rabatinová A, Šanderová H, Jirát Matějčková J et al. The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol. 2013;195:2603–11. 10.1128/JB.00188-13. PubMed DOI PMC
Kubáň V, Srb P, Štégnerová H et al. Quantitative conformational analysis of functionally important electrostatic interactions in the intrinsically disordered region of delta subunit of bacterial RNA polymerase. J Am Chem Soc. 2019;141:16817–28. 10.1021/jacs.9b07837. PubMed DOI
Boyaci H, Chen J, Jansen R et al. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature. 2019;565:382–5. 10.1038/s41586-018-0840-5. PubMed DOI PMC
Li X, Chen F, Liu X et al. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife. 2022;11:e73347. 10.7554/eLife.73347. PubMed DOI PMC
Morichaud Z, Trapani S, Vishwakarma RK et al. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Nat Commun. 2023;14:484. 10.1038/s41467-023-36113-y. PubMed DOI PMC
Rock JM, Hopkins FF, Chavez A et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol. 2017;2:1–9. 10.1038/nmicrobiol.2016.274. PubMed DOI PMC
Robinson JT, Thorvaldsdottir H, Turner D et al. igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics. 2023;39:btac830. 10.1093/bioinformatics/btac830. PubMed DOI PMC
Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. 10.1038/nprot.2008.211. PubMed DOI
Singh A, Varela C, Bhatt K et al. Identification of a desaturase involved in mycolic acid biosynthesis in PubMed DOI PMC
Aguilar PS, Cronan JE Jr, De Mendoza D. A PubMed DOI PMC
Sakamoto T, Murata N. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol. 2002;5:206–10. 10.1016/S1369-5274(02)00306-5. PubMed DOI
Murata N, Wada H. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J. 1995;308:1. 10.1042/bj3080001. PubMed DOI PMC
Weber MH, Klein W, Müller L et al. Role of the PubMed DOI
Cybulski LE, Albanesi D, Mansilla MC et al. Mechanism of membrane fluidity optimization: isothermal control of the PubMed DOI
Vakulskas CA, Pannuri A, Cortés-Selva D et al. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol Microbiol. 2014;92:945–58. 10.1111/mmi.12606. PubMed DOI PMC
Khemici V, Linder P. RNA helicases in bacteria. Curr Opin Microbiol. 2016;30:58–66. 10.1016/j.mib.2016.01.002. PubMed DOI
Iost I, Dreyfus M. DEAD-box RNA helicases in PubMed DOI PMC
de Araújo HL, Picinato BA, Lorenzetti AP et al. The DEAD-box RNA helicase RhlB is required for efficient RNA processing at low temperature in Caulobacter. Microbiol Spectr. 2023;11:e01934–01923. 10.1128/spectrum.01934-23. PubMed DOI PMC
Phadtare S. Unwinding activity of cold shock proteins and RNA metabolism. RNA Biol. 2011;8:394–7. 10.4161/rna.8.3.14823. PubMed DOI PMC
Li X, Mei H, Chen F et al. Transcriptome landscape of Mycobacterium smegmatis. Front Microbiol. 2017;8:2505. 10.3389/fmicb.2017.02505. PubMed DOI PMC
Szklarczyk D, Kirsch R, Koutrouli M et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–46. 10.1093/nar/gkac1000. PubMed DOI PMC
Akusobi C, Benghomari BS, Zhu J et al. Transposon mutagenesis in PubMed DOI PMC
Bosch B, DeJesus MA, Poulton NC et al. Genome-wide gene expression tuning reveals diverse vulnerabilities of PubMed DOI PMC
Woodruff PJ, Carlson BL, Siridechadilok B et al. Trehalose is required for growth of PubMed DOI
De Smet KA, Weston A, Brown IN et al. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology. 2000;146:199–208. 10.1099/00221287-146-1-199. PubMed DOI
Murphy HN, Stewart GR, Mischenko VV et al. The OtsAB pathway is essential for trehalose biosynthesis in PubMed DOI
Minato Y, Gohl DM, Thiede JM et al. Genomewide assessment of PubMed DOI PMC
DeJesus MA, Gerrick ER, Xu W et al. Comprehensive essentiality analysis of the PubMed DOI PMC
Gold B, Rodriguez GM, Marras SA et al. The PubMed DOI
Turapov O, Waddell SJ, Burke B et al. Antimicrobial treatment improves mycobacterial survival in nonpermissive growth conditions. Antimicrob Agents Chemother. 2014;58:2798–806. 10.1128/AAC.02774-13. PubMed DOI PMC
Vanaporn M, Titball RW. Trehalose and bacterial virulence. Virulence. 2020;11:1192–202. 10.1080/21505594.2020.1809326. PubMed DOI PMC
Reina-Bueno M, Argandoña M, Nieto JJ et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium PubMed DOI PMC
Howells AM, Bullifent HL, Dhaliwal K et al. Role of trehalose biosynthesis in environmental survival and virulence of PubMed DOI
Bailo R, Radhakrishnan A, Singh A et al. The mycobacterial desaturase DesA2 is associated with mycolic acid biosynthesis. Sci Rep. 2022;12:6943. 10.1038/s41598-022-10589-y. PubMed DOI PMC
Altabe SG, Mansilla MC, de Mendoza D. Remodeling of membrane phospholipids by bacterial desaturases. Stearoyl-CoA Desaturase Genes Lipid Metab. 2013;209–31. 10.1007/978-1-4614-7969-7. DOI
Linder P, Jankowsky E. From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011;12:505–16. 10.1038/nrm3154. PubMed DOI
Jarmoskaite I, Russell R. DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev. 2011;2:135–52. 10.1002/wrna.50. PubMed DOI PMC
Jankowsky E, Fairman ME. RNA helicases—one fold for many functions. Curr Opin Struct Biol. 2007;17:316–24. 10.1016/j.sbi.2007.05.007. PubMed DOI
Jones PG, Mitta M, Kim Y et al. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in PubMed DOI PMC
Beckering CL, Steil L, Weber MH et al. Genomewide transcriptional analysis of the cold shock response in PubMed DOI PMC
Grigorov AS, Skvortsova YV, Bychenko OS et al. Dynamic transcriptional landscape of PubMed DOI PMC
Fay A, Glickman MS. An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet. 2014;10:e1004516. 10.1371/journal.pgen.1004516. PubMed DOI PMC
Fay A, Philip J, Saha P et al. The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio. 2021;12:00123–21. 10.1128/mbio.00123-21. PubMed DOI PMC
Stewart GR, Wernisch L, Stabler R et al. Dissection of the heat-shock response in PubMed DOI
Christensen S, Rämisch S, André I. DnaK response to expression of protein mutants is dependent on translation rate and stability. Commun Biol. 2022;5:597. 10.1038/s42003-022-03542-2. PubMed DOI PMC
Yin Y, Feng X, Yu H et al. Structural basis for aggregate dissolution and refolding by the PubMed DOI PMC
Stewart GR, Snewin VA, Walzl G et al. Overexpression of heat-shock proteins reduces survival of PubMed DOI
Harnagel A, Lopez Quezada L, Park SW et al. Nonredundant functions of PubMed DOI PMC
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev. 2017;41:549–74. 10.1093/femsre/fux015. PubMed DOI
Bandyopadhyay B, Das Gupta T, Roy D et al. DnaK dependence of the mycobacterial stress-responsive regulator HspR is mediated through its hydrophobic C-terminal tail. J Bacteriol. 2012;194:4688–97. 10.1128/JB.00415-12. PubMed DOI PMC
Parijat P, Batra JK. Role of DnaK in HspR–HAIR interaction of PubMed DOI
Singh R, Kundu P, Mishra VK et al. Crystal structure of FadA2 thiolase from PubMed DOI
Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6:197–208. 10.1038/nrm1589. PubMed DOI
Gsponer J, Babu MM. The rules of disorder or why disorder rules. Prog Biophys Mol Biol. 2009;99:94–103. 10.1016/j.pbiomolbio.2009.03.001. PubMed DOI
Cumberworth A, Lamour G, Babu MM et al. Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J. 2013;454:361–9. 10.1042/BJ20130545. PubMed DOI
Wright PE, Dyson HJ. Linking folding and binding. Curr Opin Struct Biol. 2009;19:31–8. 10.1016/j.sbi.2008.12.003. PubMed DOI PMC
Daughdrill GW, Hanely LJ, Dahlquist FW. The C-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry. 1998;37:1076–82. 10.1021/bi971952t. PubMed DOI
Kim D-H, Han K-H. Transient secondary structures as general target-binding motifs in intrinsically disordered proteins. Int J Mol Sci. 2018;19:3614. 10.3390/ijms19113614. PubMed DOI PMC
Pei H-H, Hilal T, Chen ZA et al. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun. 2020;11:6418. 10.1038/s41467-020-20159-3. PubMed DOI PMC
Fink AL. Natively unfolded proteins. Curr Opin Struct Biol. 2005;15:35–41. 10.1016/j.sbi.2005.01.002. PubMed DOI
Basile W, Salvatore M, Bassot C et al. Why do eukaryotic proteins contain more intrinsically disordered regions?. PLoS Comput Biol. 2019;15:e1007186. 10.1371/journal.pcbi.1007186. PubMed DOI PMC
Madhurima K, Nandi B, Munshi S et al. Functional regulation of an intrinsically disordered protein via a conformationally excited state. Sci Adv. 2023;9:eadh4591. 10.1126/sciadv.adh4591. PubMed DOI PMC