Expanding the CarD interaction network: CrsL is a novel transcription regulator in actinobacteria

. 2025 Nov 26 ; 53 (22) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41404806

Grantová podpora
23-05622S J.Hn. Czech Science Foundation
22-12023S Czech Science Foundation
275823 Charles University
EXCELES LX22NPO5103 European Union-Next Generation EU, National Institute of Virology and Bacteriology
OPJAK Ministry of Education
CZ.02.01.01/00/22_008/0004597 Ministry of Education
CZ.02.01.01/00/22_008/0004575 Ministry of Education
LM2023055 ELIXIR CZ
75010330 Ministry of Health

Bacterial transcription regulation is critical for adaptation and survival. CarD is an essential transcription factor in mycobacteria involved in the regulation of gene expression. We searched for CarD interaction partners in Mycobacterium smegmatis and identified a novel uncharacterized protein, named CrsL (MSMEG_5890). CrsL is a 5.7 kDa protein shown by NMR to be intrinsically disordered. CrsL homologs are present in actinobacteria, including pathogenic species such as Mycobacterium tuberculosis. CrsL interacts directly with CarD, adopting an ordered structure in the complex, and also binds RNAP, controlling CarD-RNAP association. ChIP-seq showed that CrsL associates with the promoters of actively transcribed genes and ∼75% of these regions are also associated with CarD. RNA-seq revealed ∼50% and ∼66% overlap in differentially expressed genes between CrsL and CarD knockdowns during the exponential and stationary phases, respectively. Among CrsL-regulated genes are DesA desaturase (MSMEG_5773) and DEAD/DEAH-box RNA helicase MSMEG_1930, which contribute to cold stress adaptation. CrsL supports the growth of M. smegmatis at elevated temperature but limits growth in cold environments. In summary, these findings identify CrsL as a novel, conserved CarD-interacting protein playing a key role in mycobacterial stress responses by modulating CarD function.

Zobrazit více v PubMed

Sax  H, Bloemberg  G, Hasse  B  et al.  Prolonged outbreak of mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015; 61:67–75. 10.1093/cid/civ198. PubMed DOI

Sommerstein  R, Rüegg  C, Kohler  P  et al.  Transmission of PubMed DOI PMC

Murakami  KS, Darst  SA.  Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol. 2003;13:31–9. 10.1016/S0959-440X(02)00005-2. PubMed DOI

Murakami  KS, Masuda  S, Darst  SA.  Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science. 2002;296:1280–4. 10.1126/science.1069594. PubMed DOI

Chen  J, Boyaci  H, Campbell  EA.  Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol. 2021;19:95–109. 10.1038/s41579-020-00450-2. PubMed DOI PMC

Browning  DF, Busby  SJ.  The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004;2:57–65. 10.1038/nrmicro787. PubMed DOI

Helmann  JD.  Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol. 2019;112:335–47. 10.1111/mmi.14309. PubMed DOI PMC

Paget  MS.  Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–65. 10.3390/biom5031245. PubMed DOI PMC

Gomez  M, Doukhan  L, Nair  G  et al.  sigA is an essential gene in PubMed DOI

Rodrigue  S, Provvedi  R, Jacques  P-E  et al.  The σ factors of PubMed DOI

Hu  Y, Morichaud  Z, Sudalaiyadum Perumal  A  et al.  Mycobacterium RbpA cooperates with the stress-response σB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res. 2014;42:10399–408. 10.1093/nar/gku742. PubMed DOI PMC

Lee  J-H, Karakousis  PC, Bishai  WR.  Roles of SigB and SigF in the PubMed DOI PMC

Hurst-Hess  K, Biswas  R, Yang  Y  et al.  Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. mBio. 2019;10:e00273–19. https://journals.asm.org/doi/10.1128/mbio.00273-19. PubMed DOI PMC

Singha  B, Behera  D, Khan  MZ  et al.  The unique N-terminal region of PubMed DOI PMC

Sachdeva  P, Misra  R, Tyagi  AK  et al.  The sigma factors of PubMed DOI

Demaio  J, Zhang  Y, Ko  C  et al.  A stationary-phase stress-response sigma factor from PubMed DOI PMC

Gomez  J, Chen  J, Bishai  WR.  Sigma factors of PubMed DOI

Davis  E, Chen  J, Leon  K  et al.  Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Nucleic Acids Res. 2015;43:433–45. 10.1093/nar/gku1231. PubMed DOI PMC

Rammohan  J, Ruiz Manzano  A, Garner  AL  et al.  CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Res. 2015;43:3272–85. 10.1093/nar/gkv078. PubMed DOI PMC

Bortoluzzi  A, Muskett  FW, Waters  LC  et al. PubMed DOI PMC

Forti  F, Mauri  V, Dehò  G  et al.  Isolation of conditional expression mutants in PubMed DOI

Dey  A, Verma  AK, Chatterji  D.  Role of an RNA polymerase interacting protein, MsRbpA, from PubMed DOI

Hubin  EA, Fay  A, Xu  C  et al.  Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife. 2017;6:e22520. 10.7554/eLife.22520. PubMed DOI PMC

Verma  AK, Chatterji  D.  Dual role of MsRbpA: transcription activation and rescue of transcription from the inhibitory effect of rifampicin. Microbiology. 2014;160:2018–29. 10.1099/mic.0.079186-0. PubMed DOI

Hubin  EA, Tabib-Salazar  A, Humphrey  LJ  et al.  Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc Natl Acad Sci. 2015;112:7171–6. 10.1073/pnas.1504942112. PubMed DOI PMC

Boyaci  H, Saecker  R, Campbell  E.  Transcription initiation in mycobacteria: a biophysical perspective. Transcription. 2020;11:53–65. 10.1080/21541264.2019.1707612. PubMed DOI PMC

Hu  Y, Morichaud  Z, Chen  S  et al. PubMed DOI PMC

Betts  JC, Lukey  PT, Robb  LC  et al.  Evaluation of a nutrient starvation model of PubMed DOI

Dey  A, Verma  AK, Chatterji  D.  Molecular insights into the mechanism of phenotypic tolerance to rifampicin conferred on mycobacterial RNA polymerase by MsRbpA. Microbiology. 2011;157:2056–71. 10.1099/mic.0.047480-0. PubMed DOI

Newell  KV, Thomas  DP, Brekasis  D  et al.  The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on PubMed DOI

Gulten  G, Sacchettini  JC.  Structure of the Mtb CarD/RNAP β-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD. Structure. 2013;21:1859–69. 10.1016/j.str.2013.08.014. PubMed DOI PMC

Zhu  DX, Stallings  CL.  Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J Biol Chem. 2023;299:104724. 10.1016/j.jbc.2023.104724. PubMed DOI PMC

Stallings  CL, Stephanou  NC, Chu  L  et al.  CarD is an essential regulator of rRNA transcription required for PubMed DOI PMC

Srivastava  DB, Leon  K, Osmundson  J  et al.  Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci. 2013;110:12619–24. 10.1073/pnas.1308270110. PubMed DOI PMC

Zhu  DX, Garner  AL, Galburt  EA  et al.  CarD contributes to diverse gene expression outcomes throughout the genome of PubMed DOI PMC

Garner  AL, Weiss  LA, Manzano  AR  et al.  CarD integrates three functional modules to promote efficient transcription, antibiotic tolerance, and pathogenesis in mycobacteria. Mol Microbiol. 2014;93:682–97. 10.1111/mmi.12681. PubMed DOI PMC

Garner  AL, Rammohan  J, Huynh  JP  et al.  Effects of increasing the affinity of CarD for RNA polymerase on PubMed DOI PMC

Li  X, Chen  F, Liu  X  et al.  Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife. 2022;11:e73347. 10.7554/eLife.73347. PubMed DOI PMC

Panek  J, Krásný  L, Bobek  J  et al.  The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 2011;39:3418–26. 10.1093/nar/gkq1186. PubMed DOI PMC

Hnilicová  J, Jirát Matějčková  J, Šiková  M  et al.  Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res. 2014;42:11763–76. 10.1093/nar/gku793. PubMed DOI PMC

Šiková  M, Janoušková  M, Ramaniuk  O  et al.  Ms1 RNA increases the amount of RNA polymerase in PubMed DOI

Vaňková Hausnerová  V, Marvalová  O, Šiková  M  et al.  Ms1 RNA interacts with the RNA polymerase core in PubMed DOI PMC

Arnvig  KB, Comas  I, Thomson  NR  et al.  Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of PubMed DOI PMC

Vaňková Hausnerová  V, Shoman  M, Kumar  D  et al.  RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res. 2024;52:4604–26. 10.1093/nar/gkae081. PubMed DOI PMC

Kouba  T, Koval  T, Sudzinová  P  et al.  Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun. 2020;11:1–13. 10.1038/s41467-020-20158-4. PubMed DOI PMC

Vaňková Hausnerová  V, Kumar  D, Shoman  M  et al.  HelD is a global transcription factor enhancing gene expression in rapidly growing mycobacteria. bioRxiv, https://www.biorxiv.org/content/10.1101/2024.11.27.625628v1, 28 November 2024, preprint: not peer reviewed. DOI

Brezovská  B, Narasimhan  S, Šiková  M  et al.  MoaB2, a newly identified transcription factor, binds to σ in PubMed DOI PMC

Wu  Y, Li  Q, Chen  X-Z.  Detecting protein–protein interactions by far western blotting. Nat Protoc. 2007;2:3278–84. 10.1038/nprot.2007.459. PubMed DOI

Sambrook  J, Fritsch  E, Maniatis  T.  Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbor, 1987, E12.

Sklenar  V, Piotto  M, Leppik  R  et al.  Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Res Ser A. 1993;102:241–5. 10.1006/jmra.1993.1098. DOI

Bodenhausen  G, Ruben  DJ.  Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett. 1980;69:185–9. 10.1016/0009-2614(80)80041-8. DOI

Kay  LE, Ikura  M, Tschudin  R  et al.  Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 1969. 1990; 89:496–514. PubMed

Bax  A, Ikura  M.  An efficient 3D NMR technique for correlating the proton and15N backbone amide resonances with the α-carbon of the preceding residue in uniformly15N/13C enriched proteins. J Biomol NMR. 1991;1:99–104. 10.1007/BF01874573. PubMed DOI

Wittekind  M, Mueller  L.  HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Res Ser B. 1993;101:201–5. 10.1006/jmrb.1993.1033. DOI

Grzesiek  S, Bax  A.  Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc. 1992;114:6291–3. 10.1021/ja00042a003. DOI

Zuiderweg  ERP, Fesik  SW.  Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989;28:2387–91. 10.1021/bi00432a008. PubMed DOI

Pervushin  K, Riek  R, Wider  G  et al.  Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci. 1997;94:12366–71. 10.1073/pnas.94.23.12366. PubMed DOI PMC

Delaglio  F, Grzesiek  S, Vuister  GW  et al.  NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93. 10.1007/BF00197809. PubMed DOI

Marsh  JA, Singh  VK, Jia  Z  et al.  Sensitivity of secondary structure propensities to sequence differences between α-and γ-synuclein: implications for fibrillation. Protein Sci. 2006;15:2795–804. 10.1110/ps.062465306. PubMed DOI PMC

Kjaergaard  M, Poulsen  FM.  Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR. 2011;50:157–65. 10.1007/s10858-011-9508-2. PubMed DOI

Kjaergaard  M, Brander  S, Poulsen  FM.  Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR. 2011;49:139–49. 10.1007/s10858-011-9472-x. PubMed DOI

Schwarzinger  S, Kroon  GJ, Foss  TR  et al.  Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc. 2001;123:2970–8. 10.1021/ja003760i. PubMed DOI

Tamiola  K, Mulder  FA.  Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans. 2012;40:1014–20. 10.1042/BST20120171. PubMed DOI

Tamiola  K, Acar  B, Mulder  FAA.  Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc. 2010;132:18000–3. 10.1021/ja105656t. PubMed DOI

Han  B, Liu  Y, Ginzinger  SW  et al.  SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR. 2011;50:43–57. 10.1007/s10858-011-9478-4. PubMed DOI PMC

Zhang  Z, Miller  W, Schäffer  AA  et al.  Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 1998;26:3986–90. 10.1093/nar/26.17.3986. PubMed DOI PMC

Zhang  C, Zheng  W, Mortuza  S  et al.  DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics. 2020;36:2105–12. 10.1093/bioinformatics/btz863. PubMed DOI PMC

Kanehisa  M, Furumichi  M, Sato  Y  et al.  KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–92. 10.1093/nar/gkac963. PubMed DOI PMC

Okonechnikov  K, Golosova  O, Fursov  M  et al.  Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7. 10.1093/bioinformatics/bts091. PubMed DOI

Robert  X, Gouet  P.  Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–4. 10.1093/nar/gku316. PubMed DOI PMC

Crooks  GE, Hon  G, Chandonia  J-M  et al.  WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90. 10.1101/gr.849004. PubMed DOI PMC

McGuffin  LJ, Bryson  K, Jones  DT.  The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–5. 10.1093/bioinformatics/16.4.404. PubMed DOI

Høie  MH, Kiehl  EN, Petersen  B  et al. NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning. Nucleic Acids Res. 2022;50:W510–5. 10.1093/nar/gkac439. PubMed DOI PMC

Erdős  G, Dosztányi  Z.  Analyzing protein disorder with IUPred2A. Curr Protoc Bioinform. 2020;70:e99. 10.1002/cpbi.99. PubMed DOI

Walsh  I, Martin  AJ, Di Domenico  T  et al.  ESpritz: accurate and fast prediction of protein disorder. Bioinformatics. 2012;28:503–9. 10.1093/bioinformatics/btr682. PubMed DOI

Hu  G, Katuwawala  A, Wang  K  et al.  flDPnn: accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat Commun. 2021;12:4438. 10.1038/s41467-021-24773-7. PubMed DOI PMC

Jumper  J, Evans  R, Pritzel  A  et al.  Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC

Evans  R, O’Neill  M, Pritzel  A  et al.  Protein complex prediction with AlphaFold-Multimer. bioRxiv, 10.1101/2021.10.04.463034, 10 March 2022, preprint: not peer reviewed. DOI

Kim  D, Langmead  B, Salzberg  SL.  HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. 10.1038/nmeth.3317. PubMed DOI PMC

Gaspar  JM.  Improved peak-calling with MACS2. bioRxiv, 10.1101/496521, 17 December 2018, preprint: not peer reviewed. DOI

Quinlan  AR, Hall  IM.  BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2. 10.1093/bioinformatics/btq033. PubMed DOI PMC

Khan  A, Mathelier  A.  Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinf. 2017;18:1–8. 10.1186/s12859-017-1708-7. PubMed DOI PMC

Ramírez  F, Ryan  DP, Grüning  B  et al.  deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160. 10.1093/nar/gkw257. PubMed DOI PMC

Lawrence  M, Gentleman  R, Carey  V.  rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841. 10.1093/bioinformatics/btp328. PubMed DOI PMC

Hunter  JD.  Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5. 10.1109/MCSE.2007.55. DOI

Waskom  ML.  Seaborn: statistical data visualization. J Open Source Software. 2021;6:3021. 10.21105/joss.03021. DOI

Bolger  AM, Lohse  M, Usadel  B.  Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kim  D, Langmead  B, Salzberg  SL.  HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. 10.1038/nmeth.3317. PubMed DOI PMC

Li  H, Handsaker  B, Wysoker  A  et al.  The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Bonfield  JK, Marshall  J, Danecek  P  et al.  HTSlib: c library for reading/writing high-throughput sequencing data. Gigascience. 2021;10:giab007. 10.1093/gigascience/giab007. PubMed DOI PMC

Love  MI, Huber  W, Anders  S.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8. PubMed DOI PMC

Choudhary  E, Thakur  P, Pareek  M  et al.  Gene silencing by CRISPR interference in mycobacteria. Nat Commun. 2015;6:6267. 10.1038/ncomms7267. PubMed DOI

Gruber  TM, Gross  CA.  Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol. 2003;57:441–66. 10.1146/annurev.micro.57.030502.090913. PubMed DOI

Wang  Z, Cumming  BM, Mao  C  et al.  RbpA and σB association regulates polyphosphate levels to modulate mycobacterial isoniazid-tolerance. Mol Microbiol. 2018;108:627–40. 10.1111/mmi.13952. PubMed DOI

Singh  RK, Jaiswal  LK, Nayak  T  et al.  Expression, purification, and PubMed DOI PMC

Lilic  M, Holmes  NA, Bush  MJ  et al.  Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc Natl Acad Sci. 2023;120:e2220785120. 10.1073/pnas.2220785120. PubMed DOI PMC

Cole  S, Brosch  R, Parkhill  J  et al.  Deciphering the biology of PubMed DOI

Kelkar  DS, Kumar  D, Kumar  P  et al.  Proteogenomic analysis of PubMed DOI PMC

Kapopoulou  A, Lew  JM, Cole  ST.  The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis. 2011;91:8–13. 10.1016/j.tube.2010.09.006. PubMed DOI

UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. 10.1093/nar/gkac1052. PubMed DOI PMC

Rabatinová  A, Šanderová  H, Jirát Matějčková  J  et al.  The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol. 2013;195:2603–11. 10.1128/JB.00188-13. PubMed DOI PMC

Kubáň  V, Srb  P, Štégnerová  H  et al.  Quantitative conformational analysis of functionally important electrostatic interactions in the intrinsically disordered region of delta subunit of bacterial RNA polymerase. J Am Chem Soc. 2019;141:16817–28. 10.1021/jacs.9b07837. PubMed DOI

Boyaci  H, Chen  J, Jansen  R  et al.  Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature. 2019;565:382–5. 10.1038/s41586-018-0840-5. PubMed DOI PMC

Li  X, Chen  F, Liu  X  et al.  Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife. 2022;11:e73347. 10.7554/eLife.73347. PubMed DOI PMC

Morichaud  Z, Trapani  S, Vishwakarma  RK  et al.  Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Nat Commun. 2023;14:484. 10.1038/s41467-023-36113-y. PubMed DOI PMC

Rock  JM, Hopkins  FF, Chavez  A  et al.  Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol. 2017;2:1–9. 10.1038/nmicrobiol.2016.274. PubMed DOI PMC

Robinson  JT, Thorvaldsdottir  H, Turner  D  et al.  igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics. 2023;39:btac830. 10.1093/bioinformatics/btac830. PubMed DOI PMC

Huang  dW, Sherman  BT, Lempicki  RA.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. 10.1038/nprot.2008.211. PubMed DOI

Singh  A, Varela  C, Bhatt  K  et al.  Identification of a desaturase involved in mycolic acid biosynthesis in PubMed DOI PMC

Aguilar  PS, Cronan  JE  Jr, De Mendoza  D.  A PubMed DOI PMC

Sakamoto  T, Murata  N.  Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol. 2002;5:206–10. 10.1016/S1369-5274(02)00306-5. PubMed DOI

Murata  N, Wada  H.  Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J. 1995;308:1. 10.1042/bj3080001. PubMed DOI PMC

Weber  MH, Klein  W, Müller  L  et al.  Role of the PubMed DOI

Cybulski  LE, Albanesi  D, Mansilla  MC  et al.  Mechanism of membrane fluidity optimization: isothermal control of the PubMed DOI

Vakulskas  CA, Pannuri  A, Cortés-Selva  D  et al.  Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol Microbiol. 2014;92:945–58. 10.1111/mmi.12606. PubMed DOI PMC

Khemici  V, Linder  P.  RNA helicases in bacteria. Curr Opin Microbiol. 2016;30:58–66. 10.1016/j.mib.2016.01.002. PubMed DOI

Iost  I, Dreyfus  M.  DEAD-box RNA helicases in PubMed DOI PMC

de Araújo  HL, Picinato  BA, Lorenzetti  AP  et al.  The DEAD-box RNA helicase RhlB is required for efficient RNA processing at low temperature in Caulobacter. Microbiol Spectr. 2023;11:e01934–01923. 10.1128/spectrum.01934-23. PubMed DOI PMC

Phadtare  S.  Unwinding activity of cold shock proteins and RNA metabolism. RNA Biol. 2011;8:394–7. 10.4161/rna.8.3.14823. PubMed DOI PMC

Li  X, Mei  H, Chen  F  et al.  Transcriptome landscape of Mycobacterium smegmatis. Front Microbiol. 2017;8:2505. 10.3389/fmicb.2017.02505. PubMed DOI PMC

Szklarczyk  D, Kirsch  R, Koutrouli  M  et al.  The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–46. 10.1093/nar/gkac1000. PubMed DOI PMC

Akusobi  C, Benghomari  BS, Zhu  J  et al.  Transposon mutagenesis in PubMed DOI PMC

Bosch  B, DeJesus  MA, Poulton  NC  et al.  Genome-wide gene expression tuning reveals diverse vulnerabilities of PubMed DOI PMC

Woodruff  PJ, Carlson  BL, Siridechadilok  B  et al.  Trehalose is required for growth of PubMed DOI

De Smet  KA, Weston  A, Brown  IN  et al.  Three pathways for trehalose biosynthesis in mycobacteria. Microbiology. 2000;146:199–208. 10.1099/00221287-146-1-199. PubMed DOI

Murphy  HN, Stewart  GR, Mischenko  VV  et al.  The OtsAB pathway is essential for trehalose biosynthesis in PubMed DOI

Minato  Y, Gohl  DM, Thiede  JM  et al.  Genomewide assessment of PubMed DOI PMC

DeJesus  MA, Gerrick  ER, Xu  W  et al.  Comprehensive essentiality analysis of the PubMed DOI PMC

Gold  B, Rodriguez  GM, Marras  SA  et al.  The PubMed DOI

Turapov  O, Waddell  SJ, Burke  B  et al.  Antimicrobial treatment improves mycobacterial survival in nonpermissive growth conditions. Antimicrob Agents Chemother. 2014;58:2798–806. 10.1128/AAC.02774-13. PubMed DOI PMC

Vanaporn  M, Titball  RW.  Trehalose and bacterial virulence. Virulence. 2020;11:1192–202. 10.1080/21505594.2020.1809326. PubMed DOI PMC

Reina-Bueno  M, Argandoña  M, Nieto  JJ  et al.  Role of trehalose in heat and desiccation tolerance in the soil bacterium PubMed DOI PMC

Howells  AM, Bullifent  HL, Dhaliwal  K  et al.  Role of trehalose biosynthesis in environmental survival and virulence of PubMed DOI

Bailo  R, Radhakrishnan  A, Singh  A  et al.  The mycobacterial desaturase DesA2 is associated with mycolic acid biosynthesis. Sci Rep. 2022;12:6943. 10.1038/s41598-022-10589-y. PubMed DOI PMC

Altabe  SG, Mansilla  MC, de Mendoza  D.  Remodeling of membrane phospholipids by bacterial desaturases. Stearoyl-CoA Desaturase Genes Lipid Metab. 2013;209–31. 10.1007/978-1-4614-7969-7. DOI

Linder  P, Jankowsky  E.  From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011;12:505–16. 10.1038/nrm3154. PubMed DOI

Jarmoskaite  I, Russell  R.  DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev. 2011;2:135–52. 10.1002/wrna.50. PubMed DOI PMC

Jankowsky  E, Fairman  ME.  RNA helicases—one fold for many functions. Curr Opin Struct Biol. 2007;17:316–24. 10.1016/j.sbi.2007.05.007. PubMed DOI

Jones  PG, Mitta  M, Kim  Y  et al.  Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in PubMed DOI PMC

Beckering  CL, Steil  L, Weber  MH  et al.  Genomewide transcriptional analysis of the cold shock response in PubMed DOI PMC

Grigorov  AS, Skvortsova  YV, Bychenko  OS  et al.  Dynamic transcriptional landscape of PubMed DOI PMC

Fay  A, Glickman  MS.  An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet. 2014;10:e1004516. 10.1371/journal.pgen.1004516. PubMed DOI PMC

Fay  A, Philip  J, Saha  P  et al.  The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio. 2021;12:00123–21. 10.1128/mbio.00123-21. PubMed DOI PMC

Stewart  GR, Wernisch  L, Stabler  R  et al.  Dissection of the heat-shock response in PubMed DOI

Christensen  S, Rämisch  S, André  I.  DnaK response to expression of protein mutants is dependent on translation rate and stability. Commun Biol. 2022;5:597. 10.1038/s42003-022-03542-2. PubMed DOI PMC

Yin  Y, Feng  X, Yu  H  et al.  Structural basis for aggregate dissolution and refolding by the PubMed DOI PMC

Stewart  GR, Snewin  VA, Walzl  G  et al.  Overexpression of heat-shock proteins reduces survival of PubMed DOI

Harnagel  A, Lopez Quezada  L, Park  SW  et al.  Nonredundant functions of PubMed DOI PMC

Roncarati  D, Scarlato  V.  Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev. 2017;41:549–74. 10.1093/femsre/fux015. PubMed DOI

Bandyopadhyay  B, Das Gupta  T, Roy  D  et al.  DnaK dependence of the mycobacterial stress-responsive regulator HspR is mediated through its hydrophobic C-terminal tail. J Bacteriol. 2012;194:4688–97. 10.1128/JB.00415-12. PubMed DOI PMC

Parijat  P, Batra  JK.  Role of DnaK in HspR–HAIR interaction of PubMed DOI

Singh  R, Kundu  P, Mishra  VK  et al.  Crystal structure of FadA2 thiolase from PubMed DOI

Dyson  HJ, Wright  PE.  Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6:197–208. 10.1038/nrm1589. PubMed DOI

Gsponer  J, Babu  MM.  The rules of disorder or why disorder rules. Prog Biophys Mol Biol. 2009;99:94–103. 10.1016/j.pbiomolbio.2009.03.001. PubMed DOI

Cumberworth  A, Lamour  G, Babu  MM  et al.  Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J. 2013;454:361–9. 10.1042/BJ20130545. PubMed DOI

Wright  PE, Dyson  HJ.  Linking folding and binding. Curr Opin Struct Biol. 2009;19:31–8. 10.1016/j.sbi.2008.12.003. PubMed DOI PMC

Daughdrill  GW, Hanely  LJ, Dahlquist  FW.  The C-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry. 1998;37:1076–82. 10.1021/bi971952t. PubMed DOI

Kim  D-H, Han  K-H.  Transient secondary structures as general target-binding motifs in intrinsically disordered proteins. Int J Mol Sci. 2018;19:3614. 10.3390/ijms19113614. PubMed DOI PMC

Pei  H-H, Hilal  T, Chen  ZA  et al.  The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun. 2020;11:6418. 10.1038/s41467-020-20159-3. PubMed DOI PMC

Fink  AL.  Natively unfolded proteins. Curr Opin Struct Biol. 2005;15:35–41. 10.1016/j.sbi.2005.01.002. PubMed DOI

Basile  W, Salvatore  M, Bassot  C  et al.  Why do eukaryotic proteins contain more intrinsically disordered regions?. PLoS Comput Biol. 2019;15:e1007186. 10.1371/journal.pcbi.1007186. PubMed DOI PMC

Madhurima  K, Nandi  B, Munshi  S  et al.  Functional regulation of an intrinsically disordered protein via a conformationally excited state. Sci Adv. 2023;9:eadh4591. 10.1126/sciadv.adh4591. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...