The ability of MALDI-TOF for the identification of nontuberculous mycobacteria (NTM) has improved recently thanks to updated databases and optimized protein extraction procedures. Few multicentre studies on the reproducibility of MALDI-TOF have been performed so far, none on mycobacteria. The aim of this study was to evaluate the reproducibility of MALDI-TOF for the identification of NTM in 15 laboratories in 9 European countries. A total of 98 NTM clinical isolates were grown on Löwenstein-Jensen. Biomass was collected in tubes with water and ethanol, anonymized and sent out to the 15 participating laboratories. Isolates were identified using MALDI Biotyper (Bruker Daltonics). Up to 1330 MALDI-TOF identifications were collected in the study. A score ≥ 1.6 was obtained for 100% of isolates in 5 laboratories (68.2-98.6% in the other). Species-level identification provided by MALDI-TOF was 100% correct in 8 centres and 100% correct to complex-level in 12 laboratories. In most cases, the misidentifications obtained were associated with closely related species. The variability observed for a few isolates could be due to variations in the protein extraction procedure or to MALDI-TOF system status in each centre. In conclusion, MALDI-TOF showed to be a highly reproducible method and suitable for its implementation for NTM identification.
- MeSH
- druhová specificita MeSH
- lidé MeSH
- netuberkulózní mykobakterie klasifikace izolace a purifikace MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
BACKGROUND: The implementation of MALDI-TOF MS for microorganism identification has changed the routine of the microbiology laboratories as we knew it. Most microorganisms can now be reliably identified within minutes using this inexpensive, user-friendly methodology. However, its application in the identification of mycobacteria isolates has been hampered by the structure of their cell wall. Improvements in the sample processing method and in the available database have proved key factors for the rapid and reliable identification of non-tuberculous mycobacteria isolates using MALDI-TOF MS. AIMS: The main objective is to provide information about the proceedings for the identification of non-tuberculous isolates using MALDI-TOF MS and to review different sample processing methods, available databases, and the interpretation of the results. SOURCES: Results from relevant studies on the use of the available MALDI-TOF MS instruments, the implementation of innovative sample processing methods, or the implementation of improved databases are discussed. CONTENT: Insight about the methodology required for reliable identification of non-tuberculous mycobacteria and its implementation in the microbiology laboratory routine is provided. IMPLICATIONS: Microbiology laboratories where MALDI-TOF MS is available can benefit from its capacity to identify most clinically interesting non-tuberculous mycobacteria in a rapid, reliable, and inexpensive manner.
- MeSH
- atypické mykobakteriální infekce diagnóza MeSH
- bakteriologické techniky MeSH
- lidé MeSH
- netuberkulózní mykobakterie izolace a purifikace MeSH
- průběh práce MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Spread of carbapenemase-producing bacteria has been described all over the world. This phenomenon may be accelerated by many factors, including wars and natural disasters. In this report, we described an NDM-1-producing Klebsiella pneumonia ST11 recovered from a patient injured during the Maidan revolution in Ukraine. To our knowledge, this is the first report of a carbapenemase-producing Enterobacteriaceae in Ukraine and one of several reports describing wound colonization/infection of humans injured during war.
- Publikační typ
- časopisecké články MeSH