Despite the fact that environmental pollution has been implicated in the global rise of diabetes, the research on the impact of emerging pollutants such as novel flame retardants remains limited. In line with the shift towards the use of non-animal approaches in toxicological testing, this study aimed to investigate the effects of two novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) in rat (INS1E) and human (NES2Y) pancreatic beta-cell lines. One-week exposure to 1 μM and 10 μM TDCIPP and TPhP altered intracellular insulin and proinsulin levels, but not the levels of secreted insulin (despite the presence of a statistically insignificant trend). The exposures also altered the protein expression of several factors involved in beta-cell metabolic pathways and signaling, including ATP citrate lyase, isocitrate dehydrogenase 1, perilipins, glucose transporters, ER stress-related factors, and antioxidant enzymes. This study has brought new and valuable insights into the toxicity of TDCIPP and TPhP on beta-cell function and revealed alterations that might impact insulin secretion after more extended exposure. It also adds to the scarce studies using in vitro pancreatic beta-cells models in toxicological testing, thereby promoting the development of non-animal testing strategy for identifying pro-diabetic effects of chemical pollutants.
- MeSH
- beta-buňky * účinky léků metabolismus MeSH
- buněčné linie MeSH
- homeostáza * účinky léků MeSH
- inzulin * metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- organofosfáty toxicita MeSH
- organofosforové sloučeniny * toxicita MeSH
- proinsulin metabolismus MeSH
- retardanty hoření * toxicita MeSH
- sekrece inzulinu účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
It was evidenced that saturated fatty acids (FAs) have a detrimental effect on pancreatic β-cells function and survival, leading to endoplasmic reticulum (ER) calcium release, ER stress, and apoptosis. In the present study, we have tested the effect of three calcium influx inhibitors, i.e., diazoxide, nifedipine, and verapamil, on the apoptosis-inducing effect of saturated stearic acid (SA) in the human pancreatic β-cell lines NES2Y and 1.1B4. We have demonstrated that the application of all three calcium influx inhibitors tested has no inhibitory effect on SA-induced ER stress and apoptosis in both tested cell lines. Moreover, these inhibitors have pro-apoptotic potential per se at higher concentrations. Interestingly, these findings are in contradiction with those obtained with rodent cell lines and islets. Thus our data obtained with human β-cell lines suggest that the prospective usage of calcium channel blockers for prevention and therapy of type 2 diabetes mellitus, developed with the contribution of the saturated FA-induced apoptosis of β-cells, seems rather unlikely.
- Publikační typ
- časopisecké články MeSH
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
- MeSH
- apoptóza * genetika MeSH
- beta-buňky metabolismus MeSH
- biologické modely MeSH
- diabetes mellitus 2. typu etiologie metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- fyziologický stres MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus lipidů MeSH
- mitochondrie genetika metabolismus MeSH
- signální transdukce MeSH
- viabilita buněk genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Many compounds have the potential to harm pancreatic beta-cells; organochlorine pollutants belong to those compounds. In this work, we aimed to find markers of acute toxicity of p,p'-DDT exposure among proteins expressed in NES2Y human pancreatic beta-cells employing 2-D electrophoresis. We exposed NES2Y cells to a high concentration (150 μM, LC96 after 72 hours) of p,p'-DDT for 24 and 30 hours and determined proteins with changed expression using 2-D electrophoresis. We have found 22 proteins that changed their expression. They included proteins involved in ER stress (GRP78, and endoplasmin), mitochondrial proteins (GRP75, ECHM, IDH3A, NDUS1, and NDUS3), proteins involved in the maintenance of the cell morphology (EFHD2, TCPA, NDRG1, and ezrin), and some other proteins (HNRPF, HNRH1, K2C8, vimentin, PBDC1, EF2, PCNA, biliverdin reductase, G3BP1, FRIL, and HSP27). The proteins we have identified may serve as indicators of p,p'-DDT toxicity in beta-cells in future studies, including long-term exposure to environmentally relevant concentrations.
- MeSH
- 2D gelová elektroforéza MeSH
- beta-buňky cytologie účinky léků metabolismus MeSH
- biologické markery metabolismus MeSH
- buněčné linie MeSH
- DDT toxicita MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- proteomika metody MeSH
- regulace genové exprese účinky léků MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
Persistent organochlorine pollutants (POPs) gradually accumulate in the human organism due to their presence in the environment. Some studies have described a correlation between the level of POPs in the human body and the incidence of diabetes, but we know little about the direct effect of POPs on pancreatic beta-cells. We exposed pancreatic beta-cells INS1E to non-lethal concentrations of p,p'-DDT (1,1'-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene)) and p,p'-DDE (1,1'-(2,2-dichloroethene-1,1-diyl)bis(4-chlorobenzene)) for 1 month, and assessed changes in protein expression and the intracellular insulin level. 2-D electrophoresis revealed 6 proteins with changed expression in cells exposed to p,p'-DDT or p,p'-DDE. One of the detected proteins - vitamin D-binding protein (VDBP) - was upregulated in both cells exposed to p,p'-DDT, and cells exposed to p,p'-DDE. Both exposures to pollutants reduced the intracellular level of insulin mRNA, proinsulin, and insulin monomer; p,p'-DDT also slightly reduced the level of hexameric insulin. Overexpression of VDBP caused by the stable transfection of beta-cells with the gene for VDBP decreased both the proinsulin and hexameric insulin level in beta-cells similarly to the reduction detected in cells exposed to p,p'-DDT. Our data suggest that in the cells exposed to p,p'-DDT and p,p'-DDE, the increased VDBP protein level decreased the proinsulin expression in an unknown mechanism.
- MeSH
- beta-buňky účinky léků metabolismus MeSH
- buněčné linie MeSH
- DDT toxicita MeSH
- dichlordifenyldichlorethylen toxicita MeSH
- inzulin metabolismus MeSH
- krysa rodu rattus MeSH
- látky znečišťující životní prostředí toxicita MeSH
- protein vázající vitamin D metabolismus MeSH
- testy subchronické toxicity MeSH
- upregulace účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
Saturated fatty acids (FAs) induce apoptosis in the human pancreatic NES2Y β-cell line while unsaturated FAs have nearly no detrimental effect. Moreover, unsaturated FAs are capable of inhibiting the pro-apoptotic effect of saturated FAs. Hypoxia is also known to have deleterious effects on β-cells function and viability. In the present study, we have tested the modulatory effect of hypoxia on the effect of FAs on the growth and viability of the human pancreatic NES2Y β-cells. This study represents the first study testing hypoxia effect on effects of FAs in pancreatic β-cells as well as in other cell types. We showed that hypoxia increased the pro-apoptotic effect of saturated stearic acid (SA). Endoplasmic reticulum stress signaling seemed to be involved while redistribution of FA transporters fatty acid translocase/cluster of differentiation 36 (FAT/CD36) and fatty acid-binding protein (FABP) do not seem to be involved in this effect. Hypoxia also strongly decreased the protective effect of unsaturated oleic acid (OA) against the pro-apoptotic effect of SA. Thus, in the presence of hypoxia, OA was unable to save SA-treated β-cells from apoptosis induction. Hypoxia itself had only a weak detrimental effect on NES2Y cells. Our data suggest that hypoxia could represent an important factor in pancreatic β-cell death induced and regulated by FAs and thus in the development of type 2 diabetes mellitus.
- MeSH
- beta-buňky metabolismus MeSH
- biologické markery MeSH
- buněčné linie MeSH
- hypoxie metabolismus MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- proliferace buněk MeSH
- signální transdukce účinky léků MeSH
- stres endoplazmatického retikula MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Lipotoxicity is implicated in type 2 diabetes pathogenesis. Its molecular mechanisms are not completely understood. The aim of this study is to identify new suspect proteins involved in pancreatic β-cell death induction by saturated fatty acids and its inhibition by unsaturated fatty acids. EXPERIMENTAL DESIGN: Employing 2DE analysis and subsequent western blot confirmation, the differences in membrane/membrane-associated protein expression in human β-cell line NES2Y are assessed during cell death induction by stearate and its inhibition by oleate. RESULTS: Induction of apoptosis by stearate is associated with significantly increased levels of Hsp90β, peroxiredoxin-1, and 14-3-3γ in the membrane fraction of NES2Y cells and significantly decreased levels of annexin A2, annexin A4, and reticulocalbin-2. All these changes are significantly inhibited by oleate co-application. No expression changes are detected after application of stearate together with oleate. Furthermore, the expression of reticulocalbin-2 is significantly decreased after stearate application also in the whole cell lysate. CONCLUSIONS AND CLINICAL RELEVANCE: Several membrane-associated proteins that could be related to pro- and anti-apoptotic signaling initiated by fatty acids in human pancreatic β-cells are identified. As far as we know, annexin A4, reticulocalbin-2, and 14-3-3γ represent novel molecules related to the effect of fatty acids on β-cell viability.
- MeSH
- apoptóza účinky léků MeSH
- beta-buňky cytologie metabolismus MeSH
- buněčné linie MeSH
- kyselina olejová farmakologie MeSH
- kyseliny stearové farmakologie MeSH
- lidé MeSH
- membránové proteiny biosyntéza MeSH
- regulace genové exprese účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH