Fourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (ΔpKa = pKamonoanion - pKamonocation < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Hückel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, https://echmet.natur.cuni.cz/software/download), the effective mobilities were recalculated to zero ionic strength from which the thermodynamic pKa values and limiting ionic mobilities of the ampholytes were directly calculated by Henderson-Hasselbalch equation-type nonlinear regression. The tabulated thermodynamic pKa values and limiting ionic mobilities of these ampholytes (pI markers) facilitate both the overall and the narrow-segment characterization of the pH gradients obtained in IEF in order to mitigate the errors of analyte ampholyte pI assignments caused by the usual (but rarely proven) assumption of pH gradient linearity. These thermodynamic pKa and limiting mobility values also enable the reality-based numeric simulation of the IEF process using, for example, Simul (freeware, https://echmet.natur.cuni.cz/software/download).
Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.
Beta-blockers are chiral compounds with enantiomers that have different bioactivity, which means that while one is active, the other can be inactive or even harmful. Due to their high consumption and incomplete degradation in waste water, they may reach surface waters and affect aquatic organisms. To address this issue we developed a chromatographic method suitable for determining beta-blocker enantiomers in surface waters. It was tested on five beta-blockers (acebutolol, atenolol, bisoprolol, labetalol and metoprolol) and validated on bisoprolol enantiomers. Good enantioseparation of all analysed beta-blockers was achieved on the Chirobiotic V column with the mobile phase composed of methanol/acetic acid/triethylamine (100/0.20/0.15 v/v/v) at a flow rate of 0.5 mL/min and column temperature of 45 °C. Method proved to be linear in the concentration range from 0.075 µg/mL to 5 µg/mL, and showed good recovery. The limits of bisoprolol enantiomer detection were 0.025 µg/mL and 0.026 µg/mL and of quantification 0.075 µg/mL and 0.075 µg/mL. Despite its limitations, it seems to be a promising method for bisoprolol enantiomer analysis in surface water samples. Further research could focus on waste water analysis, where enantiomer concentrations may be high. Furthermore, transferring the method to a more sensitive one such as liquid chromatography coupled with tandem mass spectrometry and using ammonium acetate as the mobile phase additive instead of acetic acid and triethylamine would perhaps yield much lower limits of detection and quantification.
The present study describes a rapid and effective capillary electrophoresis (CE) method for the enantioseparation of pindolol using single-isomer octa(6-O-sulfo)-γ-cyclodextrin. The complexation parameters were determined under neutral and high pH conditions to identify optimal separation conditions using a theoretical model. Baseline separation of pindolol enantiomers was achieved within 6 min in a sodium/MOPS buffer, pH 7.2, with a selector concentration of 6 mM. The method was validated according to the ICH guidelines using imidazole as an internal standard. Low limits of detection and quantification were found, specifically 1.2 μg/mL and 4 μg/mL (0.6 μg/mL and 2 μg/mL per enantiomer), respectively. The calibration curves showed good linearity, with a coefficient of determination R2 ≥ 0.999 over a 5 - 55 μg/mL concentration range and over a 50 - 300 μg/mL concentration range of the racemic mixture. The relative standard deviations (%RSD) of intra-day and inter-day precision were lower than 8% at LOQ level, lower than 3% at 50 μg/mL level and lower than 1.5% at 300 μg/mL level. Accuracy ranged from 95 to 103% (106% at LOQ level). The proposed method was successfully tested on a medical formulation of Visken® Sandoz intravenous solution and Visken® Teofarma pills for oral use.
- MeSH
- časové faktory MeSH
- elektroforéza kapilární metody MeSH
- gama-cyklodextriny chemie MeSH
- kalibrace MeSH
- koncentrace vodíkových iontů MeSH
- limita detekce MeSH
- pindolol izolace a purifikace MeSH
- pufry MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
The partial-filling affinity capillary electrophoresis (pf-ACE) works with a ligand present in a background electrolyte that forms a weak complex with an analyte. In contrast to a more popular mobility-shift affinity capillary electrophoresis, only a short plug of the ligand is introduced into a capillary in the pf-ACE. Both methods can serve for determining apparent stability constants of the formed complexes but this task is hindered in the pf-ACE by the fact that the analyte spends only a part of its migration time in a contact with the ligand. In 1998, Amini and Westerlund published a linearization strategy that allows for extracting an effective mobility of an analyte in the presence of a neutral ligand out of the pf-ACE data. The main purpose of this paper is to show that the original formula is only approximate. We derive a new formula and demonstrate its applicability by means of computer simulations. We further inspect several strategies of data processing in the pf-ACE regarding a risk of an error propagation. This establishes a good practice of determining apparent stability constants of analyte-ligand complexes by means of the pf-ACE.
197Au, 209Bi, 59Co, natFe and 169Tm samples were irradiated several times with quasi-monoenergetic neutrons from the p+7Li reaction in the energy range of 18-34 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross sections were extracted using the SAND-II code with the reference cross sections from the IRDFF database.