The broad fish tapeworm Dibothriocephalus latus is a causative agent of human food-borne disease called diphyllobothriosis. Medical importance, scattered geographical distribution and unknown origin of D. latus in Europe and North America make this species to be an interesting model for population genetics. Microsatellite markers were originally designed by library screening using NGS approach and validated as tools for future studies on population genetics of D. latus. Out of 122 candidates selected after NGS analysis, 110 yielded PCR products of the expected size, and in 78 of them, a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for observed (Ho) and expected (He) heterozygosity, and deviations from Hardy-Weinberg equilibrium (HWE). They promise future application in studies on genetic interrelationships, origin and migratory routes of this medically important emerging tapeworm.
- MeSH
- Diphyllobothrium klasifikace genetika MeSH
- genetická variace * MeSH
- genotypizační techniky metody MeSH
- mikrosatelitní repetice * MeSH
- populační genetika metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
The monozoic tapeworm Atractolytocestus huronensis Anthony, 1958 (Cestoda: Caryophyllidea), an intestinal parasite of the common carp, is characterized by its invasive character and potential to colonize new territories. It was initially described from North America and has also been found in several European countries. The most recent findings of A. huronensis originated from China and South Africa; however, no data on genetic relationships of these populations were available. The current study provides the first molecular characterisation of A. huronensis from South Africa and China using a partial sequence of mitochondrial cytochrome c oxidase subunit 1 (cox1) and a complete ribosomal ITS2 spacer. Ribosomal and mitochondrial data were applied for phylogenetic analyses in order to assess the genetic interrelationships among global A. huronensis populations. Divergent intragenomic copies of ribosomal ITS2 were detected in all analysed specimens; the structure and frequency of the ITS2 variants of tapeworms from China and South Africa corresponded with the data on ITS2 paralogues observed previously in A. huronensis from Slovakia, the United States and the United Kingdom. The phylogenetic analysis of cox1 indicated that A. huronensis exist in two slightly differentiated clusters; one cluster was supported by all phylogenetic approaches (NJ, ML, BI) and was represented by samples from China, the USA and the UK. A second cluster was represented by tapeworms from continental Europe (Slovakia, Hungary, Romania, Croatia) and South Africa. Haplotype network analysis revealed that the highest population diversity occurs in China. The results provide useful pilot information about the interrelationships of A. huronensis on four continents and indicate that China, or the eastern Palaearctic, served as the original source population for the global expansion of this invasive tapeworm. Data on the origin and distribution of the common carp, the only specific host of A. huronensis, are also discussed.
- MeSH
- Cestoda klasifikace genetika izolace a purifikace MeSH
- cestodózy epidemiologie parazitologie přenos veterinární MeSH
- DNA helmintů genetika MeSH
- fylogeneze MeSH
- kapři anatomie a histologie parazitologie MeSH
- mezerníky ribozomální DNA genetika MeSH
- nemoci ryb epidemiologie parazitologie přenos MeSH
- respirační komplex IV genetika MeSH
- střeva parazitologie MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Chorvatsko MeSH
- Čína MeSH
- Evropa MeSH
- Rumunsko MeSH
- Spojené království MeSH
BACKGROUND: Fascioloides magna (Trematoda: Fasciolidae) is an important liver parasite of a wide range of free-living and domestic ruminants; it represents a remarkable species due to its large spatial distribution, invasive character, and potential to colonize new territories. The present study provides patterns of population genetic structure and admixture in F. magna across all enzootic regions in North America and natural foci in Europe, and infers migratory routes of the parasite on both continents. METHODS: In total, 432 individuals from five North American enzootic regions and three European foci were analysed by 11 microsatellite loci. Genetic data were evaluated by several statistical approaches: (i) the population genetic structure of F. magna was inferred using program STRUCTURE; (ii) the genetic interrelationships between populations were analysed by PRINCIPAL COORDINATES ANALYSIS; and (iii) historical dispersal routes in North America and recent invasion routes in Europe were explored using MIGRATE. RESULTS: The analysis of dispersal routes of the parasite in North America revealed west-east and south-north lineages that partially overlapped in the central part of the continent, where different host populations historically met. The exact origin of European populations of F. magna and their potential translocation routes were determined. Flukes from the first European focus, Italy, were related to F. magna from northern Pacific coast, while parasites from the Czech focus originated from south-eastern USA, particularly South Carolina. The Danube floodplain forests (third and still expanding focus) did not display relationship with any North American population; instead the Czech origin of the Danube population was indicated. A serial dilution of genetic diversity along the dispersion route across central and eastern Europe was observed. The results of microsatellite analyses were compared to previously acquired outputs from mitochondrial haplotype data and correlated with past human-directed translocations and natural migration of the final cervid hosts of F. magna. CONCLUSIONS: The present study revealed a complex picture of the population genetic structure and interrelationships of North American and European populations, global distribution and migratory routes of F. magna and an origin of European foci.
- MeSH
- celosvětové zdraví MeSH
- Fasciolidae klasifikace genetika izolace a purifikace MeSH
- genotypizační techniky MeSH
- infekce červy třídy Trematoda epidemiologie přenos MeSH
- mikrosatelitní repetice MeSH
- vysoká zvěř * MeSH
- zoonózy epidemiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Severní Amerika epidemiologie MeSH
BACKGROUND: Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time. METHODS: Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA). RESULTS: Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations. CONCLUSION: The genetic makeup of the parasite's populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations.
- MeSH
- Fasciola hepatica klasifikace enzymologie genetika izolace a purifikace MeSH
- fasciolóza epidemiologie parazitologie veterinární MeSH
- fylogeneze MeSH
- genetická variace MeSH
- molekulární sekvence - údaje MeSH
- přežvýkavci parazitologie MeSH
- proteiny červů genetika metabolismus MeSH
- respirační komplex IV genetika metabolismus MeSH
- vysoká zvěř MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- provincie Québec MeSH
- Spojené státy americké MeSH
Molecular analysis of an extensive specimen collection of morphologically distinct tapeworms of the genus Caryophyllaeus Gmelin, 1790 (Cestoda: Caryophyllidea), parasites of cyprinid fishes in the Palaearctic Region, brought evidence of host-related plasticity in critical morphological characters widely used for species circumscription and classification of these tapeworms. The results obtained here do not support the traditionally used morphological concept of species-defining characters of the order Caryophyllidea Carus, 1863, especially due to high morphological plasticity of the scolex and the anterior end of the body. Several morphotypes within both Caryophyllaeus laticeps (Pallas, 1781) and Caryophyllaeus brachycollis Janiszewska, 1953 generally corresponding to different hosts and geographical regions, were recognised likely suggesting host- and geography-related intraspecific morphological variability. Genetic data confirmed euryxenous host specificity of both species, most profoundly C. laticeps, but did not support the existence of cryptic species. In fact, some of the fish hosts may harbour both of the congeneric species including several of their respective morphotypes. The pattern of morphological and genetic divergence observed in both cestode species studied indicates a scenario of possible host range extensions and subsequent parasite diversification. If molecular sequence variability and host-related morphological polymorphism are confirmed in other groups of monozoic cestodes, it may complicate species identification and straightforward classification of these parasites.
- MeSH
- Cestoda klasifikace genetika MeSH
- cestodózy parazitologie veterinární MeSH
- Cyprinidae MeSH
- DNA helmintů genetika MeSH
- fylogeneze MeSH
- nemoci ryb parazitologie MeSH
- regulace genové exprese enzymů MeSH
- respirační komplex IV genetika metabolismus MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Molecular phylogenetic analysis of an extensive collection of monozoic tapeworms of the genus Paracaryophyllaeus Kulakovskaya, 1961 (Cestoda: Caryophyllidea), parasites of loaches (Cypriniformes: Cobitidae) in Eurasia, has revealed cryptic species diversity within this long-time monotypic genus, especially in the Paracaryophyllaeus gotoi (Motomura, 1927) species complex [syn. Paracaryophyllaeus dubininorum (Kulakovskaya, 1961); type species]. Three independent, well-supported clades were discovered on the basis of molecular data: (i) specimens from Misgurnus anguillicaudatus and Cobitis lutheri from China, Russian Far East and Japan - called herein P. cf. gotoi 1, which may be conspecific with P. gotoi (Motomura, 1927), although in the absence of sequence data for P. gotoi from its type locality (basin of the River Kumkan in Korea), no certain inferences about their identity can currently be made; (ii) specimens from M. anguillicaudatus from China and Japan - P. cf. gotoi 2, which are morphologically indistinguishable from those of P. cf. gotoi 1; and (iii) morphologically distinct tapeworms from the endemic loach Cobitis bilseli from southwestern Turkey (Beyşehir Lake), which are described herein as a new species. Paracaryophyllaeus vladkae Scholz, Oros and Aydoğdu n. sp. differs from the remaining species of the genus in the following characteristics: the testes begin anterior to the first vitelline follicles (versus posterior), the body is short and robust (versus more elongate and slender), and the scolex is wide, rounded or apically tapered (versus claviform to truncate). Species composition of the genus, host specificity of species and geographical distribution are briefly discussed.
- MeSH
- Cestoda anatomie a histologie klasifikace genetika izolace a purifikace MeSH
- cestodózy parazitologie veterinární MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- hostitelská specificita MeSH
- máloostní parazitologie MeSH
- molekulární sekvence - údaje MeSH
- nemoci ryb parazitologie MeSH
- řeky MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA veterinární MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Čína MeSH
- Japonsko MeSH
- Korejská republika MeSH
The microsatellite markers were designed for the giant liver fluke, Fascioloides magna, veterinary important liver parasite of free-living and domestic ruminants. Due to its geographic distribution (five enzootic regions across USA and Canada, three permanent European foci) and invasive character, F. magna is an interesting model for population genetics. Out of 667 amplicon candidates generated after NGS, 118 provided the best resolution and were tested with PCR analysis. In total, 56 yielded PCR products of expected size and in 36 of them the declared repetitive motif was identified by Sanger sequencing. After fragment analysis, 12 loci were proved to be polymorphic in individuals from one tested European and four North American populations. These loci were selected for setup of multiplex STR assays and utilized in genotyping of larger sample cohort. The outputs of statistical analyses indicate further global application of 11 conclusive loci in population genetics of the parasite.
- MeSH
- Fasciolidae klasifikace genetika izolace a purifikace MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- mikrosatelitní repetice MeSH
- polymorfismus genetický * MeSH
- přežvýkavci parazitologie MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Caryophyllidean cestodes (Platyhelminthes) represent an unusual group of tapeworms lacking serially repeated body parts that potentially diverged from the common ancestor of the Eucestoda prior to the evolution of segmentation. Here we evaluate the utility of two nuclear and two mitochondrial molecular markers (ssrDNA and lsrDNA, nad3 and cox1) for use in circumscribing generic boundaries and estimating interrelationships in the group. We show that these commonly employed markers do not contain sufficient signal to infer well-supported phylogenetic estimates due to substitution saturation. Moreover, we detected multiple trnK+nad3+trnS+trnW+cox1 haplotypes within individuals, indicating a history of gene exchange between the mitochondrial and nuclear genomes. The presence of such nuclear paralogs (i.e. numts), to our knowledge described here in cestodes for the first time, together with the results of phylogenetic, saturation and split-decomposition analyses all suggest that finding informative markers for estimating caryophyllidean evolution is unusually problematic in comparison to other major lineages of tapeworms.
- MeSH
- buněčné jádro genetika MeSH
- Cestoda klasifikace genetika MeSH
- fylogeneze MeSH
- genetické markery MeSH
- mitochondriální proteiny genetika MeSH
- molekulární sekvence - údaje MeSH
- proteiny červů genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Monozoic cestodes of the genus Khawia Hsü, 1935 (Caryophyllidea: Lytocestidae), parasites of cyprinid fish in Europe, Asia, Africa and North America, are revised on the basis of taxonomic evaluation of extensive materials, including recently collected specimens of most species. This evaluation has made it possible to critically assess the validity of all 17 nominal species of the genus and to provide redescriptions of the following seven species considered to be valid: Khawia sinensis Hsü, 1935 (type species); K. armeniaca (Cholodkovsky, 1915); K. baltica Szidat, 1941; K. japonensis (Yamaguti, 1934); K. parva (Zmeev, 1936); K. rossittensis (Szidat, 1937); and K. saurogobii Xi, Oros, Wang, Wu, Gao et Nie, 2009. Several new synonyms are proposed: Khawia barbi Rahemo et Mohammad, 2002 and K. lutei Al-Kalak et Rahemo, 2003 are synonymized with K. armeniaca; K. coregoni Kritscher, 1990 with Caryophyllaeus laticeps (Pallas, 1781) (family Caryophyllaeidae); K. cyprini Li, 1964 and K. iowensis Calentine et Ulmer, 1961 with K. japonensis; K. dubia (Szidat, 1937) (syn. Bothrioscolex dubius Szidat, 1937) with K. rossittensis; and Tsengia neimongkuensis Li, 1964 and T. xiamenensis Liu, Yang et Lin, 1995 with K. sinensis. Khawia prussica (Szidat, 1937) (syn. Bothrioscolex prussicus Szidat, 1937) is considered to be species incertae sedis, but its morphology indicates it may belong to Caryophyllaeus Gmelin, 1790 (Caryophyllaeidae). The molecular analysis of all seven valid species, based on comparison of sequences of two nuclear ribosomal and two mitochondrial genes, has shown that the species form three major groups clustered according to their fish hosts. Five species from common and crucian carp and goldfish were grouped together, whereas K. armeniaca from barbels (Barbinae) and K. baltica from tench (Tinca) formed separate clades. In contrast, geographical distribution does not seem to play a crucial role in grouping of individual taxa. A phylogenetic tree based on morphological characters was incongruent with that inferred from molecular data, which indicates that some morphological traits may be homoplastic. A key to identification of all species of Khawia based on morphological characteristics is provided.