Spontaneous preterm delivery presents one of the most complex challenges in obstetrics and is a leading cause of perinatal morbidity and mortality. Although it is a common endpoint for multiple pathological processes, the mechanisms governing the etiological complexity of spontaneous preterm birth and the placental responses are poorly understood. This study examined placental tissues collected between May 2019 and May 2022 from a well-defined cohort of women who experienced spontaneous preterm birth (n = 72) and healthy full-term deliveries (n = 30). Placental metabolomic profiling of polar metabolites was performed using Ultra-High Performance Liquid Chromatography/Mass Spectrometry (UHPLC/MS) analysis. The resulting data were analyzed using multi- and univariate statistical methods followed by unsupervised clustering. A comprehensive metabolomic evaluation of the placenta revealed that spontaneous preterm birth was associated with significant changes in the levels of 34 polar metabolites involved in intracellular energy metabolism and biochemical activity, including amino acids, purine metabolites, and small organic acids. We found that neither the preterm delivery phenotype nor the inflammatory response explain the reported differential placental metabolome. However, unsupervised clustering revealed two molecular subtypes of placentas from spontaneous preterm pregnancies exhibiting differential enrichment of clinical parameters. We also identified differences between early and late preterm samples, suggesting distinct placental functions in early spontaneous preterm delivery. Altogether, we present evidence that spontaneous preterm birth is associated with significant changes in the level of placental polar metabolites. Dysregulation of the placental metabolome may underpin important (patho)physiological mechanisms involved in preterm birth etiology and long-term neonatal outcomes.
- Publikační typ
- časopisecké články MeSH
Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.
- MeSH
- antigen CA-19-9 krev MeSH
- ceramidy krev MeSH
- lidé MeSH
- lipidomika metody MeSH
- lysofosfatidylcholiny krev MeSH
- metabolismus lipidů genetika MeSH
- multivariační analýza MeSH
- nádorové biomarkery krev genetika MeSH
- nádory slinivky břišní krev diagnóza mortalita patologie MeSH
- proporcionální rizikové modely MeSH
- senzitivita a specificita MeSH
- sfingomyeliny krev MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Negative-ion hydrophilic liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) method has been optimized for the quantitative analysis of ganglioside (GM3) and other polar lipid classes, such as sulfohexosylceramides (SulfoHexCer), sulfodihexosylceramides (SulfoHex2Cer), phosphatidylglycerols (PG), phosphatidylinositols (PI), lysophosphatidylinositols (LPI), and phosphatidylserines (PS). The method is fully validated for the quantitation of the studied lipids in kidney normal and tumor tissues of renal cell carcinoma (RCC) patients based on the lipid class separation and the coelution of lipid class internal standard with the species from the same lipid class. The raw data are semi-automatically processed using our software LipidQuant and statistically evaluated using multivariate data analysis (MDA) methods, which allows the complete differentiation of both groups with 100% specificity and sensitivity. In total, 21 GM3, 28 SulfoHexCer, 26 SulfoHex2Cer, 10 PG, 19 PI, 4 LPI, and 7 PS are determined in the aqueous phase of lipidomic extracts from kidney tumor tissue samples and surrounding normal tissue samples of 20 RCC patients. S-plots allow the identification of most upregulated (PI 40:5, PI 40:4, GM3 34:1, and GM3 42:2) and most downregulated (PI 32:0, PI 34:0, PS 36:4, and LPI 16:0) lipids, which are primarily responsible for the differentiation of tumor and normal groups. Another confirmation of most dysregulated lipids is performed by the calculation of fold changes together with T and p values to highlight their statistical significance. The comparison of HILIC/ESI-MS data and matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) data confirms that lipid dysregulation patterns are similar for both methods. Graphical abstract ᅟ.
RATIONALE: The goal of this work is the comparison of differences in the lipidomic compositions of human cell lines derived from normal and cancerous breast tissues, and tumor vs. normal tissues obtained after the surgery of breast cancer patients. METHODS: Hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry (HILIC/ESI-MS) using the single internal standard approach and response factors is used for the determination of relative abundances of individual lipid species from five lipid classes in total lipid extracts of cell lines and tissues. The supplementary information on the fatty acyl composition is obtained by gas chromatography/mass spectrometry (GC/MS) of fatty acid methyl esters. Multivariate data analysis (MDA) methods, such as nonsupervised principal component analysis (PCA), hierarchical clustering analysis (HCA) and supervised orthogonal partial least-squares discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples and the correlation of similarity between cell lines and tissues either for tumor or normal samples. RESULTS: MDA methods are used for differentiation of sample groups and also for identification of the most up- and downregulated lipids in tumor samples in comparison to normal samples. Observed changes are subsequently generalized and correlated with data from tumor and normal tissues of breast cancer patients. In total, 123 lipid species are identified based on their retention behavior in HILIC and observed ions in ESI mass spectra, and relative abundances are determined. CONCLUSIONS: MDA methods are applied for a clear differentiation between tumor and normal samples both for cell lines and tissues. The most upregulated lipids are phospholipids (PL) with a low degree of unsaturation (e.g., 32:1 and 34:1) and also some highly polyunsaturated PL (e.g., 40:6), while the most downregulated lipids are PL containing polyunsaturated fatty acyls (e.g., 20:4), plasmalogens and ether lipids. Copyright © 2016 John Wiley & Sons, Ltd.
- MeSH
- analýza hlavních komponent MeSH
- chromatografie kapalinová metody MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- lipidy analýza MeSH
- multivariační analýza MeSH
- nádorové buněčné linie MeSH
- nádory prsu chemie metabolismus MeSH
- prsy chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements.
Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification.
- MeSH
- časové faktory MeSH
- chromatografie s reverzní fází metody MeSH
- erytrocyty chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- lidé MeSH
- lipidy analýza krev chemie moč MeSH
- mozek - chemie MeSH
- prasata MeSH
- superkritická fluidní chromatografie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts.
- MeSH
- chromatografie kapalinová metody MeSH
- fosfatidylseriny analýza MeSH
- hmotnostní spektrometrie metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- koncentrace vodíkových iontů MeSH
- ledviny chemie MeSH
- lipidy analýza MeSH
- lysofosfolipidy analýza MeSH
- mozek - chemie MeSH
- oxid křemičitý MeSH
- prasata MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The comprehensive approach for the lipidomic characterization of human breast cancer and surrounding normal tissues is based on hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization mass spectrometry (ESI-MS) quantitation of polar lipid classes of total lipid extracts followed by multivariate data analysis using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS). This analytical methodology is applied for the detailed lipidomic characterization of ten patients with the goal to find the statistically relevant differences between tumor and normal tissues. This strategy is selected for better visualization of differences, because the breast cancer tissue is compared with the surrounding healthy tissue of the same patient, therefore changes in the lipidome are caused predominantly by the tumor growth. A large increase of total concentrations for several lipid classes is observed, including phosphatidylinositols, phosphatidylethanolamines, phosphatidylcholines, and lysophosphatidylcholines. Concentrations of individual lipid species inside the abovementioned classes are also changed, and in some cases, these differences are statistically significant. PCA and OPLS analyses enable a clear differentiation of tumor and normal tissues based on changes of their lipidome. A notable decrease of relative abundances of ether and vinylether (plasmalogen) lipid species is detected for phosphatidylethanolamines, but no difference is apparent for phosphatidylcholines.
- MeSH
- analýza hlavních komponent MeSH
- chromatografie kapalinová metody MeSH
- fosfatidylcholiny analýza MeSH
- fosfatidylethanolaminy analýza MeSH
- fosfatidylinositoly analýza MeSH
- fosfolipidy analýza chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- lipidy analýza chemie MeSH
- lysofosfatidylcholiny analýza MeSH
- multivariační analýza MeSH
- nádory prsu metabolismus patologie MeSH
- referenční hodnoty MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The characterization of differences among polar lipid classes in tumors and surrounding normal tissues of 20 kidney cancer patients is performed by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). The detailed analysis of identified lipid classes using relative abundances of characteristic ions in negative- and positive-ion modes is used for the determination of more than 120 individual lipid species containing attached fatty acyls of different chain length and double bond number. Lipid species are described using relative abundances, providing a better visualization of lipidomic differences between tumor and normal tissues. The multivariate data analysis methods using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS) are used for the characterization of statistically significant differences in identified lipid species. Ten most significant up- and down-regulated lipids in OPLS score plots are also displayed by box plots. A notable increase of relative abundances of lipids containing four and more double bonds is detected in tumor compared to normal tissues.
- MeSH
- glycerofosfolipidy MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- ledviny chemie metabolismus MeSH
- lidé MeSH
- lipidy analýza MeSH
- multivariační analýza MeSH
- nádory ledvin chemie metabolismus MeSH
- výpočetní biologie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A novel normal-phase (NP) ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) method is developed for a separation and quantitation of nonpolar lipid classes occurring in human plasma, erythrocytes and plasma lipoprotein fractions. The baseline class separation of cholesteryl esters (CE), cholesterol, triacylglycerols (TG), regioisomers of 1,2- and 1,3-diacylglycerols (DG) and 1-monoacylglycerols (1-MG) is achieved using an optimized hexane - 2-propanol-acetonitrile mobile phase within 18min for all nonpolar lipid classes or only 9min excluding monoacylglycerols not detected in studied samples. The determination of individual nonpolar lipid classes is performed by the response factor approach and the use of dioleoyl ethylene glycol as a single internal standard. Polar lipid classes, such as phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidylcholines (PC), sphingomyelins (SM) and lysophosphatidylcholines (LPC), are separated by hydrophilic interaction liquid chromatography (HILIC) using 5mmol/L aqueous ammonium acetate-methanol-acetonitrile gradient within 13minutes. The quantitation of polar lipid classes is done by a similar approach as for nonpolar lipid classes, but a different internal standard (sphingosyl PE d17:1/12:0) is used. The complementary information on fatty acyl profiles after the transesterification of the total lipid extract is obtained by gas chromatography with flame ionization detection (GC/FID). The applicability of developed methodology for fast and comprehensive characterization of blood lipidome is illustrated on samples of human plasma, erythrocytes, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) fractions.
- MeSH
- biochemická analýza krve metody MeSH
- chromatografie kapalinová * MeSH
- erytrocyty chemie MeSH
- fosfatidylcholiny chemie MeSH
- hmotnostní spektrometrie * MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- lipidy analýza chemie MeSH
- lipoproteiny krev MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH