OBJECTIVE: The cerebellum is involved in cognitive processing and emotion control. Cerebellar alterations could explain symptoms of schizophrenia spectrum disorder (SZ) and bipolar disorder (BD). In addition, literature suggests that lithium might influence cerebellar anatomy. Our aim was to study cerebellar anatomy in SZ and BD, and investigate the effect of lithium. METHODS: Participants from 7 centers worldwide underwent a 3T MRI. We included 182 patients with SZ, 144 patients with BD, and 322 controls. We automatically segmented the cerebellum using the CERES pipeline. All outputs were visually inspected. RESULTS: Patients with SZ showed a smaller global cerebellar gray matter volume compared to controls, with most of the changes located to the cognitive part of the cerebellum (Crus II and lobule VIIb). This decrease was present in the subgroup of patients with recent-onset SZ. We did not find any alterations in the cerebellum in patients with BD. However, patients medicated with lithium had a larger size of the anterior cerebellum, compared to patients not treated with lithium. CONCLUSION: Our multicenter study supports a distinct pattern of cerebellar alterations in SZ and BD.
- MeSH
- antimanika škodlivé účinky MeSH
- bipolární porucha diagnostické zobrazování farmakoterapie patologie MeSH
- dospělí MeSH
- kůra mozečku diagnostické zobrazování účinky léků patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- schizofrenie diagnostické zobrazování farmakoterapie patologie MeSH
- sloučeniny lithia škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie normy MeSH
- počítačové zpracování obrazu normy MeSH
- reprodukovatelnost výsledků MeSH
- schizofrenie diagnostické zobrazování patologie patofyziologie MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- senzitivita a specificita MeSH
- strojové učení * MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH