BACKGROUND: The classification of sleep signals is a subjective and time consuming task. A large number of automatic classifiers have been published in the past decade but a sleep community has no strong confidence to use them in clinical practice and still remains using a standard manual scoring according standardized rules. NEW METHOD: We developed a semi-supervised data-driven approach for objective and efficient evaluation of polysomnographic (PSG) data. The proposed algorithm finds a representative set of signal segments that are subsequently scored by a sleep neurologist. The remaining part of the recording is then automatically classified using these templates. RESULTS: The method was evaluated on 36 PSG recordings (18 chronic insomniacs, 18 healthy controls). We show a faster and objective evaluation of PSG data compared to the manual scoring that is over-performing automated classifiers (accuracy increases ∼14%). The classification results are comparable on both datasets. COMPARISON WITH EXISTING METHOD(S): The methodology that we propose has not yet been published in the area of sleep PSG data processing. The performance of our method is comparable to various published automated approaches (a typical published classification accuracy is ∼75-95%). The method allows the evaluation of PSG recordings in more general terms and across different recording devices and standards. CONCLUSIONS: The proposed solution is not based on a single-purpose rules or heuristics and training model is not trained on other patient's sleep recordings. The method is applicable to wide range of similar tasks and various types of physiological signals.
- MeSH
- algoritmy MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek fyziologie MeSH
- mozkové vlny MeSH
- počítačové zpracování signálu MeSH
- polysomnografie metody MeSH
- poruchy iniciace a udržování spánku patofyziologie MeSH
- shluková analýza MeSH
- spánek fyziologie MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
Cardiotocography is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO), used routinely since the 1960s by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. We assess the features on a large data set (552 records) and unlike in other published papers we use three-class expert evaluation of the records instead of the pH values. We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ranking methods. The number of accelerations and decelerations, interval index, as well as Lempel-Ziv complexity and Higuchi's fractal dimension are among the top five features.
- MeSH
- artefakty MeSH
- automatizace MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- počítačové zpracování signálu MeSH
- srdeční frekvence plodu fyziologie MeSH
- uterus fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH