BACKGROUND: Presensitized patients with circulating donor-specific antibodies (DSAs) before transplantation are at risk for antibody-mediated rejection (AMR). Peritransplant desensitization mitigates but does not eliminate the alloimmune response. We examined the possibility that subthreshold AMR activity undetected by histology could be operating in some early biopsies. METHODS: Transcriptome of kidney allograft biopsies performed within the first month in presensitized patients (DSA+) who had received desensitization and did not develop active/probable AMR by histology (R-) was compared with biopsies showing active/probable AMR (R+/DSA+). As negative controls, biopsies without rejection by histology in patients without DSA at transplantation were used (R-/DSA-). RNA sequencing from biopsies selected from the biobank was used in cohort 1 (n = 32) and microarray, including the molecular microscope (Molecular Microscope Diagnostic System [MMDx]) algorithm, in recent cohort 2 (n = 30). RESULTS: The transcriptome of R-/DSA+ was similar to R+/DSA+ as these groups differed in 14 transcripts only. Contrarily, large differences were found between both DSA+ groups and negative controls. Fast gene set enrichment analyses showed upregulation of the immune system in both DSA+ groups (gene ontology terms: adaptive immune response, humoral immune response, antigen receptor-mediated signaling, and B-cell receptor signaling or complement activation) when compared with negative controls. MMDx assessment in cohort 2 classified 50% of R-/DSA+ samples as AMR and found no differences in AMR molecular scores between R+ and R- DSA+ groups. In imlifidase desensitization, MMDx series showed a gradual increase in AMR scores over time. CONCLUSIONS: Presensitized kidney transplant recipients exhibited frequent molecular calls of AMR in biopsy-based transcript diagnostics despite desensitization therapy and negative histology.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Plasma donor-derived cell-free DNA (dd-cfDNA) is used to screen for rejection in heart transplants. We launched the Trifecta-Heart study ( ClinicalTrials.gov No. NCT04707872), an investigator-initiated, prospective trial, to examine the correlations between genome-wide molecular changes in endomyocardial biopsies (EMBs) and plasma dd-cfDNA. The present report analyzes the correlation of plasma dd-cfDNA with gene expression in EMBs from 4 vanguard centers and compared these correlations with those in 604 kidney transplant biopsies in the Trifecta-Kidney study ( ClinicalTrials.gov No. NCT04239703). METHODS: We analyzed 137 consecutive dd-cfDNA-EMB pairs from 70 patients. Plasma %dd-cfDNA was measured by the Prospera test (Natera Inc), and gene expression in EMBs was assessed by Molecular Microscope Diagnostic System using machine-learning algorithms to interpret rejection and injury states. RESULTS: Top transcripts correlating with dd-cfDNA were related to genes increased in rejection such as interferon gamma-inducible genes (eg, HLA-DMA ) but also with genes induced by injury and expressed in macrophages (eg, SERPINA1 and HMOX1 ). In gene enrichment analysis, the top dd-cfDNA-correlated genes reflected inflammation and rejection pathways. Dd-cfDNA correlations with rejection genes in EMB were similar to those seen in kidney transplant biopsies, with somewhat stronger correlations for TCMR genes in hearts and ABMR genes in kidneys. However, the correlations with parenchymal injury-induced genes and macrophage genes were much stronger in hearts. CONCLUSIONS: In this first analysis of Trifecta-Heart study, dd-cfDNA correlates significantly with molecular rejection but also with injury and macrophage infiltration, reflecting the proinflammatory properties of injured cardiomyocytes. The relationship supports the utility of dd-cfDNA in clinical management of heart transplant recipients.
- MeSH
- biologické markery krev MeSH
- biopsie MeSH
- dárci tkání * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- myokard * patologie metabolismus MeSH
- prediktivní hodnota testů MeSH
- prospektivní studie MeSH
- rejekce štěpu * genetika imunologie patologie krev diagnóza MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- transplantace ledvin škodlivé účinky MeSH
- transplantace srdce * škodlivé účinky MeSH
- volné cirkulující nukleové kyseliny * krev genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- srovnávací studie MeSH
In lung transplantation, antibody-mediated rejection (AMR) diagnosed using the International Society for Heart and Lung Transplantation criteria is uncommon compared with other organs, and previous studies failed to find molecular AMR (ABMR) in lung biopsies. However, understanding of ABMR has changed with the recognition that ABMR in kidney transplants is often donor-specific antibody (DSA)-negative and associated with natural killer (NK) cell transcripts. We therefore searched for a similar molecular ABMR-like state in transbronchial biopsies using gene expression microarray results from the INTERLUNG study (#NCT02812290). After optimizing rejection-selective transcript sets in a training set (N = 488), the resulting algorithms separated an NK cell-enriched molecular rejection-like state (NKRL) from T cell-mediated rejection (TCMR)/Mixed in a test set (N = 488). Applying this approach to all 896 transbronchial biopsies distinguished 3 groups: no rejection, TCMR/Mixed, and NKRL. Like TCMR/Mixed, NKRL had increased expression of all-rejection transcripts, but NKRL had increased expression of NK cell transcripts, whereas TCMR/Mixed had increased effector T cell and activated macrophage transcripts. NKRL was usually DSA-negative and not recognized as AMR clinically. TCMR/Mixed was associated with chronic lung allograft dysfunction, reduced one-second forced expiratory volume at the time of biopsy, and short-term graft failure, but NKRL was not. Thus, some lung transplants manifest a molecular state similar to DSA-negative ABMR in kidney and heart transplants, but its clinical significance must be established.
BACKGROUND: Many lung transplants fail due to chronic lung allograft dysfunction (CLAD). We recently showed that transbronchial biopsies (TBBs) from CLAD patients manifest severe parenchymal injury and dedifferentiation, distinct from time-dependent changes. The present study explored time-selective and CLAD-selective transcripts in mucosal biopsies from the third bronchial bifurcation (3BMBs), compared to those in TBBs. METHODS: We used genome-wide microarray measurements in 324 3BMBs to identify CLAD-selective changes as well as time-dependent changes and develop a CLAD classifier. CLAD-selective transcripts were identified with linear models for microarray data (limma) and were used to build an ensemble of 12 classifiers to predict CLAD. Hazard models and random forests were then used to predict the risk of graft loss using the CLAD classifier, transcript sets associated with rejection, injury, and time. RESULTS: T cell-mediated rejection and donor-specific antibody were increased in CLAD 3BMBs but most had no rejection. Like TBBs, 3BMBs showed a time-dependent increase in transcripts expressed in inflammatory cells that was not associated with CLAD or survival. Also like TBBs, the CLAD-selective transcripts in 3BMBs reflected severe parenchymal injury and dedifferentiation, not inflammation or rejection. While 3BMBs and TBBs did not overlap in their top 20 CLAD-selective transcripts, many CLAD-selective transcripts were significantly increased in both for example LOXL1, an enzyme controlling matrix remodeling. In Cox models for one-year survival, the 3BMB CLAD-selective transcripts and CLAD classifier predicted graft loss and correlated with CLAD stage. Many 3BMB CLAD-selective transcripts were also increased by injury in kidney transplants and correlated with decreased kidney survival, including LOXL1. CONCLUSIONS: Mucosal and transbronchial biopsies from CLAD patients reveal a diffuse molecular injury and dedifferentiation state that impacts prognosis and correlates with the physiologic disturbances. CLAD state in lung transplants shares features with failing kidney transplants, indicating elements shared by the injury responses of distressed organs.
- MeSH
- alografty MeSH
- lidé MeSH
- plíce MeSH
- rejekce štěpu * genetika MeSH
- retrospektivní studie MeSH
- sliznice MeSH
- transplantace plic * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The tubulitis with/without interstitial inflammation not meeting criteria for T-cell-mediated rejection (minimal allograft injury) is the most frequent histological findings in early transplant biopsies. The course of transcriptional changes in sequential kidney graft biopsies has not been studied yet. Molecular phenotypes were analyzed using the Molecular Microscope® Diagnostic System (MMDx) in 46 indication biopsies (median 13 postoperative days) diagnosed as minimal allograft injury and in corresponding follow-up biopsies at 3 months. All 46 patients with minimal injury in early biopsy received steroid pulses. MMDx interpreted indication biopsies as no-rejection in 34/46 (74%), T-cell-mediated rejection (TCMR) in 4/46 (9%), antibody-mediated rejection in 6/46 (13%), and mixed rejection in 2/46 (4%) cases. Follow-up biopsies were interpreted by MMDx in 37/46 (80%) cases as no-rejection, in 4/46 (9%) as TCMR, and in 5/46 (11%) as mixed rejection. Follow-up biopsies showed a decrease in MMDx-assessed acute kidney injury (P = 0.001) and an increase of atrophy-fibrosis (P = 0.002). The most significant predictor of MMDx rejection scores in follow-up biopsies was the tubulitis classifier score in initial biopsies (AUC = 0.84, P = 0.002), confirmed in multivariate binary regression (OR = 16, P = 0.016). Molecular tubulitis score at initial biopsy has the potential to discriminate patients at risk for molecular rejection score at follow-up biopsy.
- MeSH
- alografty MeSH
- biopsie MeSH
- kohortové studie MeSH
- ledviny MeSH
- lidé MeSH
- rejekce štěpu * MeSH
- transplantace ledvin * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Banff 2019 kidney allograft pathology update excluded isolated tubulitis without interstitial inflammation (ISO-T) from the category of borderline (suspicious) for acute T cell-mediated rejection due to its proposed benign clinical outcome. In this study, we explored the molecular assessment of ISO-T. ISO-T or interstitial inflammation with tubulitis (I + T) was diagnosed in indication biopsies within the first 14 postoperative days. The molecular phenotype of ISO-T was compared to I + T either by using RNA sequencing (n = 16) or by Molecular Microscope Diagnostic System (MMDx, n = 51). RNA sequencing showed lower expression of genes related to interferon-y (p = 1.5 *10-16), cytokine signaling (p = 2.1 *10-20) and inflammatory response (p = 1.0*10-13) in the ISO-T group than in I + T group. Transcripts with increased expression in the I + T group overlapped significantly with previously described pathogenesis-based transcript sets associated with cytotoxic and effector T cell transcripts, and with T cell-mediated rejection (TCMR). MMDx classified 25/32 (78%) ISO-T biopsies and 12/19 (63%) I + T biopsies as no-rejection. ISO-T had significantly lower MMDx scores for interstitial inflammation (p = 0.014), tubulitis (p = 0.035) and TCMR (p = 0.016) compared to I + T. Fewer molecular signals of inflammation in isolated tubulitis suggest that this is also a benign phenotype on a molecular level.
- MeSH
- alografty metabolismus patologie MeSH
- biologické markery * MeSH
- biopsie MeSH
- intersticiální nefritida diagnóza etiologie MeSH
- lidé MeSH
- přežívání štěpu genetika imunologie MeSH
- rejekce štěpu etiologie metabolismus patologie MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- transplantace ledvin * škodlivé účinky MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In hemolymph of insect species, compounds with remarkable properties for pharmaceutical industry are present. At the first line, there were found compounds of low molecular mass, less than 1 kDa. One of such compounds, β-alanyl-tyrosine (252 Da), was isolated from larval hemolymph of some species of holometabolous insects (e.g. Neobellieria bullata). Its paralytic activity and antimicrobial properties were described until now. In this study, we present the effect of elongation of β-alanyl-tyrosine by repeating of this motive on the biological and physical properties of prepared analogues. For assessment of antimicrobial properties of these new compounds strains of Gram-positive, Gram-negative bacteria and fungi were used, we also followed the haemolytic activity and toxic effect on human cell culture HepG2. On the base of ECD spectroscopy measurement, subsequent molecular modelling and known secondary structure of original β-alanyl-tyrosine dipeptide, the secondary structures of repeating sequences of β-AY were specified. The repeating structures of β-alanyl-tyrosine show increase in antimicrobial activity; for Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, minimal inhibitory concentration was decreased from 30 to 15 mM for 2xβ-AY, 0.4 mM for 4xβ-AY and 0.25 mM for 6xβ-AY.
- MeSH
- aminokyselinové motivy MeSH
- antiinfekční látky chemie farmakologie MeSH
- biologické toxiny chemie farmakologie MeSH
- buňky Hep G2 MeSH
- dipeptidy chemie farmakologie MeSH
- houby účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- proliferace buněk účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Degradation of chlorobenzoic acids (e.g., products of microbial degradation of PCB) by strains of microorganisms isolated from PCB contaminated soils was assessed. From seven bulk-soil isolates two strains unique in ability to degrade a wider range of chlorobenzoic acids than others were selected, individually and even in a complex mixture of 11 different chlorobenzoic acids. Such a feature is lacking in most tested degraders. To investigate the influence of vegetation on chlorobenzoic acids degraders, root exudates of two plant species known for supporting PCB degradation in soil were tested. While with individual chlorobenzoic acids the presence of plant exudates leads to a decrease of degradation yield, in case of a mixture of chlorobenzoic acids either a change in bacterial degradation specificity, associated with 3- and 4-chlorobenzoic acid, or an extension of the spectrum of degraded chlorobenzoic acids was observed.
- MeSH
- Arthrobacter izolace a purifikace metabolismus MeSH
- biodegradace účinky léků MeSH
- chlorbenzoáty metabolismus MeSH
- kořeny rostlin chemie MeSH
- Pseudomonas izolace a purifikace metabolismus MeSH
- rostlinné extrakty farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH